論文の概要: Topological Structure Learning Should Be A Research Priority for LLM-Based Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2505.22467v1
- Date: Wed, 28 May 2025 15:20:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.689148
- Title: Topological Structure Learning Should Be A Research Priority for LLM-Based Multi-Agent Systems
- Title(参考訳): LLMに基づくマルチエージェントシステムのためのトポロジ的構造学習
- Authors: Jiaxi Yang, Mengqi Zhang, Yiqiao Jin, Hao Chen, Qingsong Wen, Lu Lin, Yi He, Weijie Xu, James Evans, Jindong Wang,
- Abstract要約: 大規模言語モデルに基づくマルチエージェントシステム(MAS)は、協調的な知性によって複雑なタスクに取り組むための強力なパラダイムとして登場した。
最適な協力のためにどのようにエージェントを構造的に整理すべきかという問題は、まだほとんど未解決のままである。
本稿では,エージェントの選択,構造プロファイリング,トポロジ合成という3段階の体系的枠組みを導入する。
- 参考スコア(独自算出の注目度): 30.49725326159972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence. Nevertheless, the question of how agents should be structurally organized for optimal cooperation remains largely unexplored. In this position paper, we aim to gently redirect the focus of the MAS research community toward this critical dimension: develop topology-aware MASs for specific tasks. Specifically, the system consists of three core components - agents, communication links, and communication patterns - that collectively shape its coordination performance and efficiency. To this end, we introduce a systematic, three-stage framework: agent selection, structure profiling, and topology synthesis. Each stage would trigger new research opportunities in areas such as language models, reinforcement learning, graph learning, and generative modeling; together, they could unleash the full potential of MASs in complicated real-world applications. Then, we discuss the potential challenges and opportunities in the evaluation of multiple systems. We hope our perspective and framework can offer critical new insights in the era of agentic AI.
- Abstract(参考訳): 大規模言語モデルに基づくマルチエージェントシステム(MAS)は、協調的な知性によって複雑なタスクに取り組むための強力なパラダイムとして登場した。
それでも、最適な協力のためにどのようにエージェントを構造的に整理すべきかという問題は、ほとんど未解決のままである。
本稿では,MAS研究コミュニティの焦点を,特定のタスクに対するトポロジを意識したMASの開発という,この重要な次元に優しくリダイレクトすることを目的としている。
具体的には、エージェント、通信リンク、通信パターンという3つのコアコンポーネントで構成され、その調整性能と効率を集合的に形成する。
この目的のために,エージェントの選択,構造プロファイリング,トポロジ合成という3段階の体系的枠組みを導入する。
それぞれのステージは、言語モデル、強化学習、グラフ学習、生成モデリングといった分野での新しい研究機会を呼び起こすだろう。
次に,複数のシステム評価における潜在的な課題と機会について論じる。
私たちは、エージェントAIの時代において、私たちの視点とフレームワークが重要な新しい洞察を提供できることを願っています。
関連論文リスト
- An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems [40.53603737069306]
マルチエージェントAIシステム(MAS)は、分散インテリジェンスのための有望なフレームワークを提供する。
本稿は、大規模言語モデル(LLM)の最近の進歩、連合最適化、人間とAIの相互作用から洞察を得て、MASの現在の可能性と課題を体系的に概観する。
論文 参考訳(メタデータ) (2025-05-23T22:05:19Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - Why Do Multi-Agent LLM Systems Fail? [91.39266556855513]
MAST(Multi-Agent System Failure taxonomy, MAST)は,MASの故障を理解するために考案された分類法である。
我々は、200以上のタスクにまたがる7つの人気のあるMASフレームワークを分析し、6つの専門家のアノテータを含む。
14のユニークな障害モードを特定し、(i)仕様問題、(ii)エージェント間ミスアライメント、(iii)タスク検証の3つに分類した。
論文 参考訳(メタデータ) (2025-03-17T19:04:38Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied Multi-Adnt System (EMAS) は、現実の課題に対処する可能性に注目が集まっている。
基礎モデルの最近の進歩は、よりリッチなコミュニケーションと適応的な問題解決が可能な生成エージェントの道を開いた。
この調査は、EMASがこれらの生成能力の恩恵を受けることができるかを体系的に検証する。
論文 参考訳(メタデータ) (2025-02-17T07:39:34Z) - Multi-Agent Collaboration Mechanisms: A Survey of LLMs [6.545098975181273]
マルチエージェントシステム(Multi-Agent Systems、MAS)は、知的エージェントのグループによる複雑なタスクの協調と解決を可能にする。
この研究は、MASの協調的な側面に関する広範な調査を提供し、将来の研究を導くための枠組みを紹介している。
論文 参考訳(メタデータ) (2025-01-10T19:56:50Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Balancing Autonomy and Alignment: A Multi-Dimensional Taxonomy for
Autonomous LLM-powered Multi-Agent Architectures [0.0]
大規模言語モデル(LLM)は、洗練された言語理解と生成能力を備えた人工知能の分野に革命をもたらした。
本稿では,LLMを用いた自律型マルチエージェントシステムが自律性とアライメントの動的相互作用をどのようにバランスさせるかを分析するために,総合的な多次元分類法を提案する。
論文 参考訳(メタデータ) (2023-10-05T16:37:29Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。