論文の概要: An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems
- arxiv url: http://arxiv.org/abs/2505.18397v1
- Date: Fri, 23 May 2025 22:05:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 16:58:42.390194
- Title: An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems
- Title(参考訳): マルチエージェントAIシステムの可能性と課題
- Authors: Fangqiao Tian, An Luo, Jin Du, Xun Xian, Robert Specht, Ganghua Wang, Xuan Bi, Jiawei Zhou, Jayanth Srinivasa, Ashish Kundu, Charles Fleming, Rui Zhang, Zirui Liu, Mingyi Hong, Jie Ding,
- Abstract要約: マルチエージェントAIシステム(MAS)は、分散インテリジェンスのための有望なフレームワークを提供する。
本稿は、大規模言語モデル(LLM)の最近の進歩、連合最適化、人間とAIの相互作用から洞察を得て、MASの現在の可能性と課題を体系的に概観する。
- 参考スコア(独自算出の注目度): 40.53603737069306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent AI systems (MAS) offer a promising framework for distributed intelligence, enabling collaborative reasoning, planning, and decision-making across autonomous agents. This paper provides a systematic outlook on the current opportunities and challenges of MAS, drawing insights from recent advances in large language models (LLMs), federated optimization, and human-AI interaction. We formalize key concepts including agent topology, coordination protocols, and shared objectives, and identify major risks such as dependency, misalignment, and vulnerabilities arising from training data overlap. Through a biologically inspired simulation and comprehensive theoretical framing, we highlight critical pathways for developing robust, scalable, and secure MAS in real-world settings.
- Abstract(参考訳): マルチエージェントAIシステム(MAS)は、分散インテリジェンスのための有望なフレームワークを提供する。
本稿は、大規模言語モデル(LLM)の最近の進歩、連合最適化、人間とAIの相互作用から洞察を得て、MASの現在の可能性と課題を体系的に概観する。
エージェントトポロジ、コーディネーションプロトコル、共有目的などの重要な概念を形式化し、トレーニングデータの重複に起因する依存性、不一致、脆弱性などの大きなリスクを特定します。
生物学的にインスピレーションを受けたシミュレーションと包括的な理論的フレーミングを通じて、実世界の環境下で堅牢でスケーラブルでセキュアなMASを開発するための重要な経路を強調します。
関連論文リスト
- Internet of Agents: Fundamentals, Applications, and Challenges [66.44234034282421]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
本稿では,モデルコンテキストプロトコル(MCP)によるマルチエージェントシステムの進化のための包括的フレームワークを提案する。
我々は、統合理論基盤、高度なコンテキスト管理技術、スケーラブルな調整パターンを開発することで、AIエージェントアーキテクチャに関するこれまでの研究を拡張した。
私たちは、現在の制限、新たな研究機会、そして業界全体にわたる潜在的な変革的応用を特定します。
論文 参考訳(メタデータ) (2025-04-26T03:43:03Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - A Comprehensive Survey on Multi-Agent Cooperative Decision-Making: Scenarios, Approaches, Challenges and Perspectives [6.277211882332452]
多エージェント協調意思決定は、複数のエージェントが協力して、確立されたタスクを完了し、特定の目的を達成する。
これらの技術は、自律運転、ドローンナビゲーション、災害救助、シミュレートされた軍事的対立といった現実のシナリオに広く応用されている。
論文 参考訳(メタデータ) (2025-03-17T17:45:46Z) - Generative Multi-Agent Collaboration in Embodied AI: A Systematic Review [32.73711802351707]
Embodied Multi-Adnt System (EMAS) は、現実の課題に対処する可能性に注目が集まっている。
基礎モデルの最近の進歩は、よりリッチなコミュニケーションと適応的な問題解決が可能な生成エージェントの道を開いた。
この調査は、EMASがこれらの生成能力の恩恵を受けることができるかを体系的に検証する。
論文 参考訳(メタデータ) (2025-02-17T07:39:34Z) - Interpretable Concept-based Deep Learning Framework for Multimodal Human Behavior Modeling [5.954573238057435]
EUの一般データ保護規則は、リスクの高いAIシステムが十分に解釈可能であることを要求している。
既存の説明可能なメソッドは、しばしば解釈可能性とパフォーマンスを妥協する。
我々は、新しく一般化可能なフレームワーク、すなわち注意誘導概念モデル(AGCM)を提案する。
AGCMは、予測につながる概念とそれらがどこに観察されるかを特定することによって、学習可能な概念的な説明を提供する。
論文 参考訳(メタデータ) (2025-02-14T13:15:21Z) - Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms [6.285314639722078]
AIエージェントは、その目的を動的に調整する権限を持つべきだ、と私たちは主張する。
私たちは、これらのシステムの創発的で、自己組織化され、文脈に合った性質へのシフトを呼びかけます。
論文 参考訳(メタデータ) (2025-02-05T22:20:15Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。