EvolveSearch: An Iterative Self-Evolving Search Agent
- URL: http://arxiv.org/abs/2505.22501v1
- Date: Wed, 28 May 2025 15:50:48 GMT
- Title: EvolveSearch: An Iterative Self-Evolving Search Agent
- Authors: Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang, Yufeng Li, Kewei Tu, Pengjun Xie, Fei Huang,
- Abstract summary: Large language models (LLMs) have transformed agentic information seeking capabilities through the integration of tools such as search engines and web browsers.<n>We propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data.
- Score: 98.18686493123785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has transformed the landscape of agentic information seeking capabilities through the integration of tools such as search engines and web browsers. However, current mainstream approaches for enabling LLM web search proficiency face significant challenges: supervised fine-tuning struggles with data production in open-search domains, while RL converges quickly, limiting their data utilization efficiency. To address these issues, we propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data. Extensive experiments on seven multi-hop question-answering (MHQA) benchmarks demonstrate that EvolveSearch consistently improves performance across iterations, ultimately achieving an average improvement of 4.7\% over the current state-of-the-art across seven benchmarks, opening the door to self-evolution agentic capabilities in open web search domains.
Related papers
- SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents [43.74003959397812]
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments.<n>These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly.<n>Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories.<n>We propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively.
arXiv Detail & Related papers (2025-08-04T05:51:55Z) - AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench [65.21702462691933]
We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators.<n>Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%.
arXiv Detail & Related papers (2025-07-03T11:59:15Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research.<n>We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn.<n>We demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking.
arXiv Detail & Related papers (2025-06-23T17:27:19Z) - s3: You Don't Need That Much Data to Train a Search Agent via RL [41.21029905607559]
Retrieval-augmented generation (RAG) systems empower large language models (LLMs) to access external knowledge during inference.<n>We propose s3, a lightweight, model-agnostic framework that decouples the searcher from the generator and trains the searcher using a Gain Beyond RAG reward.
arXiv Detail & Related papers (2025-05-20T09:53:56Z) - R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution [60.80016554091364]
R&D-Agent is a dual-agent framework for iterative exploration.<n>The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback.<n>R&D-Agent is evaluated on MLE-Bench and emerges as the top-performing machine learning engineering agent.
arXiv Detail & Related papers (2025-05-20T06:07:00Z) - Demystifying and Enhancing the Efficiency of Large Language Model Based Search Agents [9.862334188345791]
Large Language Model (LLM)-based search agents have shown remarkable capabilities in solving complex tasks.<n>We introduce SearchAgent-X, a high-efficiency inference framework for LLM-based search agents.<n>SearchAgent-X consistently outperforms state-of-the-art systems such as vLLM and HNSW-based retrieval.
arXiv Detail & Related papers (2025-05-17T16:07:01Z) - Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging [7.047640531842663]
InForage is a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process.<n>We construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks.<n>These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
arXiv Detail & Related papers (2025-05-14T12:13:38Z) - ZeroSearch: Incentivize the Search Capability of LLMs without Searching [69.55482019211597]
We introduce ZeroSearch, a framework that incentivizes the capabilities of large language models to use a real search engine with simulated searches during training.<n>Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents.
arXiv Detail & Related papers (2025-05-07T17:30:22Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.
We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.
We adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - Tree Search for Language Model Agents [69.43007235771383]
We propose an inference-time search algorithm for LM agents to perform exploration and multi-step planning in interactive web environments.
Our approach is a form of best-first tree search that operates within the actual environment space.
It is the first tree search algorithm for LM agents that shows effectiveness on realistic web tasks.
arXiv Detail & Related papers (2024-07-01T17:07:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.