Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
- URL: http://arxiv.org/abs/2505.22511v2
- Date: Thu, 29 May 2025 01:25:19 GMT
- Title: Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
- Authors: Siyeop Yoon, Yujin Oh, Pengfei Jin, Sifan Song, Matthew Tivnan, Dufan Wu, Xiang Li, Quanzheng Li,
- Abstract summary: Surf2CT is a framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and demographic data.<n>We trained our model on a combined dataset of 3,198 torso CT scans sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge.
- Score: 13.161605581865357
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Surf2CT, a novel cascaded flow matching framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and simple demographic data (age, sex, height, weight). This is the first approach capable of generating realistic volumetric internal anatomy images solely based on external body shape and demographics, without any internal imaging. Surf2CT proceeds through three sequential stages: (1) Surface Completion, reconstructing a complete signed distance function (SDF) from partial torso scans using conditional 3D flow matching; (2) Coarse CT Synthesis, generating a low-resolution CT volume from the completed SDF and demographic information; and (3) CT Super-Resolution, refining the coarse volume into a high-resolution CT via a patch-wise conditional flow model. Each stage utilizes a 3D-adapted EDM2 backbone trained via flow matching. We trained our model on a combined dataset of 3,198 torso CT scans (approximately 1.13 million axial slices) sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge. Evaluation on 700 paired torso surface-CT cases demonstrated strong anatomical fidelity: organ volumes exhibited small mean percentage differences (range from -11.1% to 4.4%), and muscle/fat body composition metrics matched ground truth with strong correlation (range from 0.67 to 0.96). Lung localization had minimal bias (mean difference -2.5 mm), and surface completion significantly improved metrics (Chamfer distance: from 521.8 mm to 2.7 mm; Intersection-over-Union: from 0.87 to 0.98). Surf2CT establishes a new paradigm for non-invasive internal anatomical imaging using only external data, opening opportunities for home-based healthcare, preventive medicine, and personalized clinical assessments without the risks associated with conventional imaging techniques.
Related papers
- TRACE: Temporally Reliable Anatomically-Conditioned 3D CT Generation with Enhanced Efficiency [40.82927972746919]
TRACE is a framework that generates 3D medical images with temporal alignment.<n>An overlapping-frame frame pairs pairs into a flexible length sequence, reconstructed into atemporally and anatomically aligned 3D volume.
arXiv Detail & Related papers (2025-07-01T14:35:39Z) - seg2med: a bridge from artificial anatomy to multimodal medical images [5.92914320764123]
seg2med is a framework for anatomy-driven multimodal medical image synthesis.<n> anatomical maps are independently derived from three sources: real patient data, XCAT digital phantoms, and synthetic anatomies created by combining organs from multiple patients.<n>The framework achieves SSIM of 0.94 for CT and 0.89 for MR compared to real data, and FSIM of 0.78 for simulated CT.
arXiv Detail & Related papers (2025-04-12T11:32:32Z) - Robust Body Composition Analysis by Generating 3D CT Volumes from Limited 2D Slices [15.84853819616586]
Two-dimensional (2D) single-slice computed tomography (CT) imaging has been used repeatedly for body composition analysis.<n>This paper presents a novel method to generate 3D CT volumes from limited number of 2D slices using a latent diffusion model (LDM)<n> Experiments on both in-house and public 3D abdominal CT datasets demonstrate that the proposed method significantly enhances body composition analysis.
arXiv Detail & Related papers (2025-01-22T18:32:23Z) - TSUBF-Net: Trans-Spatial UNet-like Network with Bi-direction Fusion for Segmentation of Adenoid Hypertrophy in CT [15.491823587869087]
Adenoid hypertrophy is a common cause of obstructive sleep apnea-hypopnea syndrome in children.<n>We introduce TSUBF-Net, a 3D medical image segmentation framework.<n>TSUBF-Net is superior to the state-of-the-art methods with the lowest HD95: 7.03, IoU:85.63, and DSC: 92.26 on our own dataset.
arXiv Detail & Related papers (2024-12-01T12:21:23Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
We propose DiffuX2CT, which models CT reconstruction from ultra-sparse X-rays as a conditional diffusion process.
By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays.
As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays.
arXiv Detail & Related papers (2024-07-18T14:20:04Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - Evaluation of Synthetically Generated CT for use in Transcranial Focused
Ultrasound Procedures [5.921808547303054]
Transcranial focused ultrasound (tFUS) is a therapeutic ultrasound method that focuses sound through the skull to a small region noninvasively and often under MRI guidance.
CT imaging is used to estimate the acoustic properties that vary between individual skulls to enable effective focusing during tFUS procedures.
Here, we synthesized CT images from routinely acquired T1-weighted MRI by using a 3D patch-based conditional generative adversarial network (cGAN)
We compared the performance of sCT to real CT (rCT) images for tFUS planning using Kranion and simulations using the acoustic toolbox,
arXiv Detail & Related papers (2022-10-26T15:15:24Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
We present an effective framework and refinement process of pulmonary vessel segmentation from chest computed tomographic (CT) images.
The key to our approach is a 2.5D segmentation network applied from three axes, which presents a robust and fully automated pulmonary vessel segmentation result.
Our method outperforms other network structures by a large margin and achieves by far the highest average DICE score of 0.9272 and precision of 0.9310.
arXiv Detail & Related papers (2021-07-03T21:46:29Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.