論文の概要: Correctness Assessment of Code Generated by Large Language Models Using Internal Representations
- arxiv url: http://arxiv.org/abs/2501.12934v1
- Date: Wed, 22 Jan 2025 15:04:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:47.031650
- Title: Correctness Assessment of Code Generated by Large Language Models Using Internal Representations
- Title(参考訳): 内部表現を用いた大規模言語モデルによる符号の正確性評価
- Authors: Tuan-Dung Bui, Thanh Trong Vu, Thu-Trang Nguyen, Son Nguyen, Hieu Dinh Vo,
- Abstract要約: 大規模言語モデル(LLM)が生成するコードの正確性を評価する新しいフレームワークであるOPENIAを紹介する。
我々の経験的分析により、これらの内部表現が潜時情報を符号化し、生成したコードの正しさと強く相関していることが明らかとなった。
OPENIAはベースラインモデルより一貫して優れており、高い精度、精度、リコール、F1スコアを実現し、スタンドアロンコード生成の最大2倍の改善を実現している。
- 参考スコア(独自算出の注目度): 4.32362000083889
- License:
- Abstract: Ensuring the correctness of code generated by Large Language Models (LLMs) presents a significant challenge in AI-driven software development. Existing approaches predominantly rely on black-box (closed-box) approaches that evaluate correctness post-generation, failing to utilize the rich insights embedded in the LLMs' internal states during code generation. In this paper, we introduce OPENIA, a novel white-box (open-box) framework that leverages these internal representations to assess the correctness of LLM-generated code. OPENIA systematically analyzes the intermediate states of representative open-source LLMs specialized for code, including DeepSeek-Coder, CodeLlama, and MagicCoder, across diverse code generation benchmarks. Our empirical analysis reveals that these internal representations encode latent information, which strongly correlates with the correctness of the generated code. Building on these insights, OPENIA uses a white-box/open-box approach to make informed predictions about code correctness, offering significant advantages in adaptability and robustness over traditional classification-based methods and zero-shot approaches. Experimental results demonstrate that OPENIA consistently outperforms baseline models, achieving higher accuracy, precision, recall, and F1-Scores with up to a 2X improvement in standalone code generation and a 46% enhancement in repository-specific scenarios. By unlocking the potential of in-process signals, OPENIA paves the way for more proactive and efficient quality assurance mechanisms in LLM-assisted code generation.
- Abstract(参考訳): LLM(Large Language Models)が生成するコードの正確性を保証することは、AI駆動ソフトウェア開発において大きな課題となる。
既存のアプローチは主にブラックボックス(クローゼットボックス)アプローチに依存しており、コード生成中にLCMの内部状態に埋め込まれた豊富な洞察を利用できない。
本稿では、これらの内部表現を活用してLLM生成コードの正確性を評価する、新しいホワイトボックス(オープンボックス)フレームワークであるOPENIAを紹介する。
OPENIAは、さまざまなコード生成ベンチマークで、DeepSeek-Coder、CodeLlama、MagicCoderなど、コード専用のオープンソースLLMの中間状態を体系的に分析する。
我々の経験的分析により、これらの内部表現が潜時情報を符号化し、生成したコードの正しさと強く相関していることが明らかとなった。
これらの洞察に基づいて、OPENIAはホワイトボックス/オープンボックスのアプローチを使用して、コードの正確性に関する情報的予測を行い、従来の分類ベースの手法やゼロショットアプローチに対して、適応性と堅牢性に大きなメリットを提供する。
実験の結果、OPENIAはベースラインモデルを一貫して上回り、より高い精度、精度、リコール、F1スコアを実現し、スタンドアロンコード生成の最大2倍の改善とリポジトリ固有のシナリオの46%の強化を実現している。
プロセス内信号の可能性を解き放つことで、OPENIAはLLMアシストコード生成においてより積極的に効率的な品質保証機構を実現することができる。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Attention Is All You Need for LLM-based Code Vulnerability Localization [30.532439965854774]
手動のコード監査やルールベースのツールなど、従来の脆弱性のローカライゼーションの方法は、多くの場合、時間をかけてスコープに制限される。
本稿では,大規模言語モデルに固有の自己認識機構を活用する新しいフレームワークであるLOVAを紹介する。
LOVA は既存の LLM ベースのアプローチよりも大幅に優れており,F1 スコアの最大 5.3 倍の改善が達成されている。
論文 参考訳(メタデータ) (2024-10-20T05:02:18Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - LLM4VV: Exploring LLM-as-a-Judge for Validation and Verification Testsuites [6.796136787585992]
大規模言語モデル(LLM)は進化し、ソフトウェア開発のランドスケープに大きな革命をもたらしています。
本稿では,ディレクティブプログラミングモデルのコンパイラ実装を評価するために使用されるテストの判定について考察する。
論文 参考訳(メタデータ) (2024-08-21T15:54:17Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - AI-powered Code Review with LLMs: Early Results [10.37036924997437]
本稿では,Large Language Model (LLM) ベースのモデルを用いて,ソフトウェアの品質と効率を改善する新しい手法を提案する。
提案するLLMベースのAIエージェントモデルは,大規模コードリポジトリ上でトレーニングされている。
コードの臭いを検出し、潜在的なバグを特定し、改善の提案を提供し、コードを最適化することを目的としている。
論文 参考訳(メタデータ) (2024-04-29T08:27:50Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Code Needs Comments: Enhancing Code LLMs with Comment Augmentation [91.52444946362547]
本稿では、既存のコードに対するコメントを生成する新しいデータ拡張手法と、自然言語と相関の低いコードデータをフィルタリングするデータフィルタリング戦略を導入する。
我々は3つのコード中心の大規模言語モデルの実験を行い、2つの広く使われているプログラミングスキルベンチマークで一貫した性能向上を観察した。
論文 参考訳(メタデータ) (2024-02-20T13:56:38Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。