論文の概要: TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE
- arxiv url: http://arxiv.org/abs/2505.22735v1
- Date: Wed, 28 May 2025 18:00:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.45921
- Title: TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE
- Title(参考訳): TensorShield: クリティカルDNNテンソルをTEEでシールドすることでデバイス上の推論を保護する
- Authors: Tong Sun, Bowen Jiang, Hailong Lin, Borui Li, Yixiao Teng, Yi Gao, Wei Dong,
- Abstract要約: 既存の知恵は信頼された実行環境(TEE)内にモデルをデプロイする
本論文は,MS と MIA を完全に防御しながらモデルの部分テンソルを遮蔽する,最初の効率的なデバイス上の推論作業であるShield とのギャップを埋めるものである。
- 参考スコア(独自算出の注目度): 15.680713503694951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To safeguard user data privacy, on-device inference has emerged as a prominent paradigm on mobile and Internet of Things (IoT) devices. This paradigm involves deploying a model provided by a third party on local devices to perform inference tasks. However, it exposes the private model to two primary security threats: model stealing (MS) and membership inference attacks (MIA). To mitigate these risks, existing wisdom deploys models within Trusted Execution Environments (TEEs), which is a secure isolated execution space. Nonetheless, the constrained secure memory capacity in TEEs makes it challenging to achieve full model security with low inference latency. This paper fills the gap with TensorShield, the first efficient on-device inference work that shields partial tensors of the model while still fully defending against MS and MIA. The key enabling techniques in TensorShield include: (i) a novel eXplainable AI (XAI) technique exploits the model's attention transition to assess critical tensors and shields them in TEE to achieve secure inference, and (ii) two meticulous designs with critical feature identification and latency-aware placement to accelerate inference while maintaining security. Extensive evaluations show that TensorShield delivers almost the same security protection as shielding the entire model inside TEE, while being up to 25.35$\times$ (avg. 5.85$\times$) faster than the state-of-the-art work, without accuracy loss.
- Abstract(参考訳): ユーザのデータのプライバシを保護するため、デバイス上の推論は、モバイルとIoT(Internet of Things)デバイスにおいて、顕著なパラダイムとして登場した。
このパラダイムでは、推論タスクを実行するために、サードパーティがローカルデバイスに提供するモデルをデプロイする。
しかし、モデル盗難(MS)とメンバーシップ推論攻撃(MIA)の2つの主要なセキュリティ脅威にプライベートモデルを公開する。
これらのリスクを軽減するため、既存の知恵は、安全な独立した実行スペースであるTrusted Execution Environments (TEEs)内にモデルをデプロイする。
それでも、TEEの制約付きセキュアメモリ容量は、推論レイテンシを低くして、完全なモデルセキュリティを実現するのを困難にしている。
本稿では,MS と MIA を完全に防御しながら,モデルの部分テンソルを遮蔽する最初の効率的なオンデバイス推論作業である TensorShield とギャップを埋める。
TensorShieldの重要な技術は以下のとおりである。
i)新しいeXplainable AI(XAI)技術は、モデルの注意推移を利用して臨界テンソルを評価し、それらをTEEで遮蔽し、安全な推論を実現する。
二 セキュリティを維持しつつ、推論を加速させるため、重要な特徴識別と遅延認識配置の2つの厳密な設計。
広範囲な評価によると、TensorShieldはTEE内のモデル全体を保護し、最大25.35$\times$ (avg)までを保証している。
5.85$\times$) は最先端の作業よりも高速で、精度の低下はない。
関連論文リスト
- T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
テキストからビデオモデルへの攻撃はジェイルブレイク攻撃に弱いため、特別な方法で安全メカニズムをバイパスし、有害または安全でないコンテンツの生成につながる。
我々は、ジェイルブレイクの脅威からテキストからビデオモデルを守るために設計された包括的でモデルに依存しない防衛フレームワークであるT2VShieldを提案する。
本手法は,既存の防御の限界を特定するために,入力,モデル,出力の段階を体系的に解析する。
論文 参考訳(メタデータ) (2025-04-22T01:18:42Z) - Tit-for-Tat: Safeguarding Large Vision-Language Models Against Jailbreak Attacks via Adversarial Defense [90.71884758066042]
大きな視覚言語モデル(LVLM)は、視覚入力による悪意のある攻撃に対する感受性という、ユニークな脆弱性を導入している。
本稿では,脆弱性発生源からアクティブ防衛機構へ視覚空間を変換するための新しい手法であるESIIIを提案する。
論文 参考訳(メタデータ) (2025-03-14T17:39:45Z) - TEESlice: Protecting Sensitive Neural Network Models in Trusted Execution Environments When Attackers have Pre-Trained Models [12.253529209143197]
TSDPは、TEE内のプライバシーに敏感な重みを保護し、GPUに不感な重みをオフロードする手法である。
トレーニング戦略の前に新たなパーティションを導入し,プライバシに敏感な重みをモデルの他のコンポーネントと効果的に分離する。
提案手法は, 計算コストを10倍に削減し, 完全なモデル保護を実現できることを示す。
論文 参考訳(メタデータ) (2024-11-15T04:52:11Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Memory-Efficient and Secure DNN Inference on TrustZone-enabled Consumer IoT Devices [9.928745904761358]
エッジインテリジェンスにより、元のデータを転送することなく、リソース要求のDeep Neural Network(DNN)推論が可能になる。
プライバシに敏感なアプリケーションでは、ハードウェアアイソレーションされた信頼できる実行環境(TEE)にモデルをデプロイすることが不可欠である。
我々は,モデル推論における包括的プライバシ保護を保証するため,TrustZoneにおける高度なモデル展開のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-19T09:22:50Z) - MirrorNet: A TEE-Friendly Framework for Secure On-device DNN Inference [14.08010398777227]
ディープニューラルネットワーク(DNN)モデルは、リアルタイム推論のためのエッジデバイスで普及している。
既存の防御アプローチでは、モデルの機密性を完全に保護できないか、あるいは重大なレイテンシの問題が発生する。
本稿では、モデル機密性を保護するため、任意のDNNモデルに対してTEEフレンドリーな実装を生成するMirrorNetを提案する。
評価のために、MirrorNetは認証と違法使用の間に18.6%の精度差を達成でき、ハードウェアオーバーヘッドは0.99%に過ぎなかった。
論文 参考訳(メタデータ) (2023-11-16T01:21:19Z) - No Privacy Left Outside: On the (In-)Security of TEE-Shielded DNN
Partition for On-Device ML [28.392497220631032]
既存のTSDPソリューションは、プライバシスティーリング攻撃に対して脆弱であり、一般的に信じられているほど安全ではないことを示す。
DNN推論中にMSとMIAを防御する新しいTSDP法TEESliceを提案する。
論文 参考訳(メタデータ) (2023-10-11T02:54:52Z) - Publishing Efficient On-device Models Increases Adversarial
Vulnerability [58.6975494957865]
本稿では,大規模モデルのオンデバイス版を公開する際のセキュリティ上の考慮事項について検討する。
まず、敵がデバイス上のモデルを悪用し、大きなモデルを攻撃しやすくすることを示す。
次に、フルスケールと効率的なモデルとの類似性が増加するにつれて、脆弱性が増加することを示す。
論文 参考訳(メタデータ) (2022-12-28T05:05:58Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution
Environments [37.84943219784536]
我々は、エッジデバイスのTrusted Execution Environment(TEE)を使用して、ディープニューラルネットワーク(DNN)に対する攻撃面を制限するフレームワークであるDarkneTZを紹介する。
我々は、CPU実行時間、メモリ使用量、正確な消費電力を含むDarkneTZの性能を評価する。
結果から,単一のレイヤが隠されている場合でも,信頼性の高いモデルプライバシを提供し,技術MIAの状態を防御することが可能になる。
論文 参考訳(メタデータ) (2020-04-12T21:42:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。