論文の概要: IRS: Incremental Relationship-guided Segmentation for Digital Pathology
- arxiv url: http://arxiv.org/abs/2505.22855v1
- Date: Wed, 28 May 2025 20:41:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.532839
- Title: IRS: Incremental Relationship-guided Segmentation for Digital Pathology
- Title(参考訳): IRS:Incrmental Relation-Guided Segmentation for Digital Pathology
- Authors: Ruining Deng, Junchao Zhu, Juming Xiong, Can Cui, Tianyuan Yao, Junlin Guo, Siqi Lu, Marilyn Lionts, Mengmeng Yin, Yu Wang, Shilin Zhao, Yucheng Tang, Yihe Yang, Paul Dennis Simonson, Mert R. Sabuncu, Haichun Yang, Yuankai Huo,
- Abstract要約: 時間的に取得された部分的注釈付きデータに対処するインクリメンタルリレーション誘導学習方式
IRSは、病理学的セグメンテーションのマルチスケールな性質を効果的に扱う。
IRSは、現実世界のデジタル病理アプリケーションにとって堅牢なアプローチである。
- 参考スコア(独自算出の注目度): 13.534959964309895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning is rapidly emerging as a key focus in computer vision, aiming to develop AI systems capable of continuous improvement, thereby enhancing their value and practicality in diverse real-world applications. In healthcare, continual learning holds great promise for continuously acquired digital pathology data, which is collected in hospitals on a daily basis. However, panoramic segmentation on digital whole slide images (WSIs) presents significant challenges, as it is often infeasible to obtain comprehensive annotations for all potential objects, spanning from coarse structures (e.g., regions and unit objects) to fine structures (e.g., cells). This results in temporally and partially annotated data, posing a major challenge in developing a holistic segmentation framework. Moreover, an ideal segmentation model should incorporate new phenotypes, unseen diseases, and diverse populations, making this task even more complex. In this paper, we introduce a novel and unified Incremental Relationship-guided Segmentation (IRS) learning scheme to address temporally acquired, partially annotated data while maintaining out-of-distribution (OOD) continual learning capacity in digital pathology. The key innovation of IRS lies in its ability to realize a new spatial-temporal OOD continual learning paradigm by mathematically modeling anatomical relationships between existing and newly introduced classes through a simple incremental universal proposition matrix. Experimental results demonstrate that the IRS method effectively handles the multi-scale nature of pathological segmentation, enabling precise kidney segmentation across various structures (regions, units, and cells) as well as OOD disease lesions at multiple magnifications. This capability significantly enhances domain generalization, making IRS a robust approach for real-world digital pathology applications.
- Abstract(参考訳): 継続的な学習はコンピュータビジョンの重要な焦点として急速に発展し、継続的な改善が可能なAIシステムを開発し、様々な現実世界のアプリケーションにおけるそれらの価値と実用性を高めることを目指している。
医療分野では、継続的学習は、日常的に病院で収集される連続的なデジタル病理データにとって大きな約束である。
しかしながら、デジタル全スライド画像(WSI)上のパノラマセグメンテーションは、粗い構造(例えば、領域や単位オブジェクト)から細かな構造(例えば、細胞)にまたがる全ての潜在的なオブジェクトに対する包括的なアノテーションを得ることができないことが多いため、大きな課題を呈している。
この結果、時間的および部分的な注釈付きデータとなり、全体論的セグメンテーションフレームワークを開発する上で大きな課題となる。
さらに、理想的なセグメンテーションモデルは、新しい表現型、見えない病気、多様な集団を取り入れ、このタスクをさらに複雑にするべきである。
本稿では,デジタル病理学におけるアウト・オブ・ディストリビューション(OOD)継続学習能力を維持しつつ,時間的に取得した部分的な注釈付きデータに対処する,新規で統一されたインクリメンタルリレーション誘導型セグメンテーション(IRS)学習手法を提案する。
IRSの重要な革新は、単純なインクリメンタルな普遍命題行列によって、既存のクラスと新しく導入されたクラスの間の解剖学的関係を数学的にモデル化することで、新しい時空間OOD連続学習パラダイムを実現する能力である。
実験の結果,IRS法は病的分節のマルチスケールな性質を効果的に処理し,様々な構造(領域,単位,細胞)と OOD 病の多発性病変の正確な腎分節を可能にした。
この能力はドメインの一般化を著しく強化し、IRSは現実世界のデジタル病理学アプリケーションにとって堅牢なアプローチとなる。
関連論文リスト
- A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
完全に注釈付きCTデータセットは存在せず、すべての解剖学がトレーニングのために記述されている。
完全解剖を分割できる連続学習駆動CTモデルを提案する。
単体CT分割モデルCL-Netは, 臨床的に包括的に包括的に235個の粒状体解剖の集合を高精度に分割することができる。
論文 参考訳(メタデータ) (2025-03-16T23:55:02Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
ゼロショット組織像分類におけるこれらの課題に対処するため, MR-PHE(Multi-Resolution Prompt-Guided Hybrid Embedding)と呼ばれる新しいフレームワークを提案する。
我々は,グローバルな画像埋め込みと重み付けされたパッチ埋め込みを統合したハイブリッドな埋め込み戦略を導入する。
類似性に基づくパッチ重み付け機構は、クラス埋め込みとの関連性に基づいて、アテンションのような重み付けをパッチに割り当てる。
論文 参考訳(メタデータ) (2025-03-13T12:18:37Z) - Foundation Models in Computational Pathology: A Review of Challenges, Opportunities, and Impact [0.34826922265324145]
は、細胞と病理のスペクトルにわたって微妙な視覚下組織の手がかりをマイニングする能力を示している。
データの規模は劇的に増加し、数千から数百万のマルチギガピクセルの組織画像へと成長した。
これらのイノベーションの真の可能性と臨床実践への統合について検討する。
論文 参考訳(メタデータ) (2025-02-12T11:57:11Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
論文 参考訳(メタデータ) (2024-06-07T12:01:37Z) - Incremental Learning for Heterogeneous Structure Segmentation in Brain
Tumor MRI [11.314017805825685]
本稿では,従来のタスクと新しいタスクを分離するために,バランスの取れた剛性と可塑性分岐を有する分散型二重フローモジュールを提案する。
標的領域を連続的に変化させる脳腫瘍セグメンテーションタスクの枠組みについて検討した。
論文 参考訳(メタデータ) (2023-05-30T20:39:03Z) - Critical Learning Periods for Multisensory Integration in Deep Networks [112.40005682521638]
ニューラルネットワークが様々な情報源からの情報を統合する能力は、トレーニングの初期段階において、適切な相関した信号に晒されることに批判的になることを示す。
臨界周期は、訓練されたシステムとその学習された表現の最終性能を決定づける、複雑で不安定な初期過渡的ダイナミクスから生じることを示す。
論文 参考訳(メタデータ) (2022-10-06T23:50:38Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。