論文の概要: Forging a Dynamic Memory: Retrieval-Guided Continual Learning for Generalist Medical Foundation Models
- arxiv url: http://arxiv.org/abs/2512.13072v1
- Date: Mon, 15 Dec 2025 08:09:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.579146
- Title: Forging a Dynamic Memory: Retrieval-Guided Continual Learning for Generalist Medical Foundation Models
- Title(参考訳): ダイナミックメモリの鍛造:一般医療基盤モデルのための検索ガイド型連続学習
- Authors: Zizhi Chen, Yizhen Gao, Minghao Han, Yizhou Liu, Zhaoyu Chen, Dingkang Yang, Lihua Zhang,
- Abstract要約: 本稿では,継続的学習のための包括的枠組みを提案する。
モデル微調整のためのリアルタイムガイダンスを提供するマルチモーダル多層RAGシステムを用いる。
動的知識蒸留フレームワークを導入する。
- 参考スコア(独自算出の注目度): 45.285970665585914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal biomedical Vision-Language Models (VLMs) exhibit immense potential in the field of Continual Learning (CL). However, they confront a core dilemma: how to preserve fine-grained intra-modality features while bridging the significant domain gap across different modalities. To address this challenge, we propose a comprehensive framework. Leveraging our 18-million multimodal and comprehensive medical retrieval database derived from PubMed scientific papers, we pioneer the integration of Retrieval-Augmented Generation (RAG) into CL. Specifically, we employ a multi-modal, multi-layer RAG system that provides real-time guidance for model fine-tuning through dynamic, on-demand knowledge retrieval. Building upon this, we introduce a dynamic knowledge distillation framework. This framework precisely resolves the aforementioned core dilemma by dynamically modulating the importance of the parameter space, the granularity of the distilled knowledge, and the data distribution of the reference dataset in accordance with the required level of detail. To thoroughly validate the clinical value of our strategy, we have designed a more rigorous \textbf{M}edical Generalist Task Incremental Learning (MGTIL) benchmark. This benchmark is engineered to simultaneously evaluate the model's capacity for adaptation to significant domain shifts, retention of subtle intra-domain features, and real-time learning of novel and complex medical tasks. Extensive experimental results demonstrate that our proposed method achieves state-of-the-art (SOTA) performance across all metrics. The code is provided in the supplementary materials.
- Abstract(参考訳): VLM(Multimodal Biomedical Vision-Language Models)は、連続学習(CL)分野において大きな可能性を秘めている。
しかし、それらは中核のジレンマに直面している: 異なるモダリティにまたがる重要なドメインギャップを埋めながら、細粒度のモダリティ内特徴を保存する方法。
この課題に対処するため,我々は包括的枠組みを提案する。
PubMedの科学論文から得られた18万件のマルチモーダル・包括的医療検索データベースを活用し,レトリーバル・拡張世代(RAG)のCLへの統合を開拓した。
具体的には、動的オンデマンド知識検索によるモデル微調整のためのリアルタイムガイダンスを提供するマルチモーダル多層RAGシステムを用いる。
これに基づいて,動的知識蒸留フレームワークを導入する。
この枠組みは、パラメータ空間の重要性、蒸留された知識の粒度、および要求された詳細レベルに応じて参照データセットのデータ分布を動的に調節することにより、上記のコアジレンマを正確に解決する。
我々の戦略の臨床的価値を徹底的に検証するために、より厳密な \textbf{M}edical Generalist Task Incremental Learning (MGTIL) ベンチマークを設計した。
このベンチマークは、重要なドメインシフトへの適応能力、微妙なドメイン内機能の保持、新規で複雑な医療タスクのリアルタイム学習を同時に評価するために設計された。
実験結果から,提案手法はすべての指標に対してSOTA(State-of-the-art)性能を実現することを示す。
コードは補充材料で提供される。
関連論文リスト
- MedAlign: A Synergistic Framework of Multimodal Preference Optimization and Federated Meta-Cognitive Reasoning [52.064286116035134]
我々はMed-VQA(Med-VQA)のための視覚的LVLM応答を保証するフレームワークであるMedAlignを開発した。
まず、優先学習を視覚的コンテキストに合わせるために、マルチモーダルな直接選好最適化(mDPO)の目的を提案する。
次に、画像とテキストの類似性を生かし、クエリを専門的でコンテキスト拡張されたLVLMにルーティングする検索型混合処理(RA-MoE)アーキテクチャを設計する。
論文 参考訳(メタデータ) (2025-10-24T02:11:05Z) - MedSeqFT: Sequential Fine-tuning Foundation Models for 3D Medical Image Segmentation [55.37355146924576]
MedSeqFTは、医用画像解析のためのシーケンシャルな微調整フレームワークである。
事前訓練されたモデルを新しいタスクに適応させ、表現能力を改善する。
最先端の微調整戦略を一貫して上回ります。
論文 参考訳(メタデータ) (2025-09-07T15:22:53Z) - Foundation Model for Skeleton-Based Human Action Understanding [56.89025287217221]
本稿では,統一骨格に基づくDense Representation Learningフレームワークを提案する。
USDRLはトランスフォーマーベースのDense Spatio-Temporal (DSTE)、Multi-Grained Feature Deorrelation (MG-FD)、Multi-Perspective Consistency Training (MPCT)で構成されている。
論文 参考訳(メタデータ) (2025-08-18T02:42:16Z) - Advancing AI Research Assistants with Expert-Involved Learning [84.30323604785646]
大規模言語モデル (LLM) と大規模マルチモーダルモデル (LMM) は、生物医学的な発見を促進することを約束するが、その信頼性は未定である。
ARIEL(AI Research Assistant for Expert-in-the-Loop Learning)は,オープンソースの評価・最適化フレームワークである。
LMMは詳細な視覚的推論に苦しむのに対し、最先端のモデルでは流動性はあるが不完全な要約を生成する。
論文 参考訳(メタデータ) (2025-05-03T14:21:48Z) - Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training [10.701353329227722]
学術文献から高品質なテキストトレーニングデータの蒸留を自動化する枠組みを提案する。
われわれのアプローチは、バイオメディカル領域とより密接に一致した質問を自己評価し、生成する。
本手法は,生命科学領域の事前学習モデルと比較して,質問応答タスクを大幅に改善する。
論文 参考訳(メタデータ) (2025-01-25T07:20:44Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - MoRE: Multi-Modal Contrastive Pre-training with Transformers on X-Rays, ECGs, and Diagnostic Report [4.340464264725625]
我々は,X線,心電図(ECG),放射線学・心臓医学報告を相乗的に組み合わせた,新しいマルチモーダルコントラスト事前学習フレームワークを提案する。
我々はLoRA-Peftを用いて、LLMにおけるトレーニング可能なパラメータを著しく削減し、視覚変換器(ViT)に最近の線形アテンション降下戦略を取り入れ、よりスムーズなアテンションを実現する。
我々の知る限り、我々はX線、心電図、放射線学・医学レポートをこの手法と組み合わせた統合モデルを提案している。
論文 参考訳(メタデータ) (2024-10-21T17:42:41Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。