Structured Memory Mechanisms for Stable Context Representation in Large Language Models
- URL: http://arxiv.org/abs/2505.22921v1
- Date: Wed, 28 May 2025 22:49:04 GMT
- Title: Structured Memory Mechanisms for Stable Context Representation in Large Language Models
- Authors: Yue Xing, Tao Yang, Yijiashun Qi, Minggu Wei, Yu Cheng, Honghui Xin,
- Abstract summary: The model integrates explicit memory units, gated writing mechanisms, and attention-based reading modules.<n>A forgetting function is introduced to enable dynamic updates of memory content.<n>The model achieves clear advantages in text generation consistency, stability in multi-turn question answering, and accuracy in cross-context reasoning.
- Score: 16.929937978584917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the limitations of large language models in understanding long-term context. It proposes a model architecture equipped with a long-term memory mechanism to improve the retention and retrieval of semantic information across paragraphs and dialogue turns. The model integrates explicit memory units, gated writing mechanisms, and attention-based reading modules. A forgetting function is introduced to enable dynamic updates of memory content, enhancing the model's ability to manage historical information. To further improve the effectiveness of memory operations, the study designs a joint training objective. This combines the main task loss with constraints on memory writing and forgetting. It guides the model to learn better memory strategies during task execution. Systematic evaluation across multiple subtasks shows that the model achieves clear advantages in text generation consistency, stability in multi-turn question answering, and accuracy in cross-context reasoning. In particular, the model demonstrates strong semantic retention and contextual coherence in long-text tasks and complex question answering scenarios. It effectively mitigates the context loss and semantic drift problems commonly faced by traditional language models when handling long-term dependencies. The experiments also include analysis of different memory structures, capacity sizes, and control strategies. These results further confirm the critical role of memory mechanisms in language understanding. They demonstrate the feasibility and effectiveness of the proposed approach in both architectural design and performance outcomes.
Related papers
- MemOS: A Memory OS for AI System [116.87568350346537]
Large Language Models (LLMs) have become an essential infrastructure for Artificial General Intelligence (AGI)<n>Existing models mainly rely on static parameters and short-lived contextual states, limiting their ability to track user preferences or update knowledge over extended periods.<n>MemOS is a memory operating system that treats memory as a manageable system resource.
arXiv Detail & Related papers (2025-07-04T17:21:46Z) - Memory-Augmented Architecture for Long-Term Context Handling in Large Language Models [0.46040036610482665]
Large Language Models face challenges in maintaining coherent interactions over extended dialogues due to their limited contextual memory.<n>We propose a memory-augmented architecture that dynamically retrieves, updates, and prunes relevant information from past interactions, ensuring effective long-term context handling.
arXiv Detail & Related papers (2025-06-23T03:57:25Z) - Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
We develop a measure of textitmemory utilization'<n>This metric is tailored to the fundamental class of systems with textitinput-invariant and textitinput-varying linear operators
arXiv Detail & Related papers (2025-04-28T08:12:30Z) - Cognitive Memory in Large Language Models [8.059261857307881]
This paper examines memory mechanisms in Large Language Models (LLMs), emphasizing their importance for context-rich responses, reduced hallucinations, and improved efficiency.<n>It categorizes memory into sensory, short-term, and long-term, with sensory memory corresponding to input prompts, short-term memory processing immediate context, and long-term memory implemented via external databases or structures.
arXiv Detail & Related papers (2025-04-03T09:58:19Z) - Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction [0.0]
Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency.<n>A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers.<n>The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism.
arXiv Detail & Related papers (2025-02-04T06:25:20Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism [46.441032033076034]
Memory mechanism offers a flexible solution for managing long contexts.
We introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), incorporating a dual-structured memory pool.
Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM enhanced performance compared to existing approaches.
arXiv Detail & Related papers (2024-06-19T02:46:18Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z) - SCM: Enhancing Large Language Model with Self-Controlled Memory Framework [54.33686574304374]
Large Language Models (LLMs) are constrained by their inability to process lengthy inputs, resulting in the loss of critical historical information.<n>We propose the Self-Controlled Memory (SCM) framework to enhance the ability of LLMs to maintain long-term memory and recall relevant information.
arXiv Detail & Related papers (2023-04-26T07:25:31Z) - Learning to Learn Variational Semantic Memory [132.39737669936125]
We introduce variational semantic memory into meta-learning to acquire long-term knowledge for few-shot learning.
The semantic memory is grown from scratch and gradually consolidated by absorbing information from tasks it experiences.
We formulate memory recall as the variational inference of a latent memory variable from addressed contents.
arXiv Detail & Related papers (2020-10-20T15:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.