論文の概要: Gradient Boosting Decision Tree with LSTM for Investment Prediction
- arxiv url: http://arxiv.org/abs/2505.23084v1
- Date: Thu, 29 May 2025 04:38:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.679468
- Title: Gradient Boosting Decision Tree with LSTM for Investment Prediction
- Title(参考訳): 投資予測のためのLSTMを用いたグラディエントブースティング決定木
- Authors: Chang Yu, Fang Liu, Jie Zhu, Shaobo Guo, Yifan Gao, Zhongheng Yang, Meiwei Liu, Qianwen Xing,
- Abstract要約: このフレームワークは、時系列財務データを処理し、7つのモデルを用いてパフォーマンスを評価する。
MAE、R-squared、MSE、RMSEといった主要なメトリクスは、異なる時間スケールでベンチマークを確立するために使用される。
実験の結果,提案手法は個々のモデルと比較して精度を10~15%向上することがわかった。
- 参考スコア(独自算出の注目度): 10.423142507018577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a hybrid framework combining LSTM (Long Short-Term Memory) networks with LightGBM and CatBoost for stock price prediction. The framework processes time-series financial data and evaluates performance using seven models: Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), Bidirectional LSTM (BiLSTM), vanilla LSTM, XGBoost, LightGBM, and standard Neural Networks (NNs). Key metrics, including MAE, R-squared, MSE, and RMSE, are used to establish benchmarks across different time scales. Building on these benchmarks, we develop an ensemble model that combines the strengths of sequential and tree-based approaches. Experimental results show that the proposed framework improves accuracy by 10 to 15 percent compared to individual models and reduces error during market changes. This study highlights the potential of ensemble methods for financial forecasting and provides a flexible design for integrating new machine learning techniques.
- Abstract(参考訳): 本稿では,LSTM(Long Short-Term Memory)ネットワークとLightGBMとCatBoostを組み合わせたハイブリッドフレームワークを提案する。
このフレームワークは、時系列の財務データを処理し、Artificial Neural Networks(ANN)、Convolutional Neural Networks(CNN)、Bidirectional LSTM(BiLSTM)、vanilla LSTM、XGBoost、LightGBM、標準ニューラルネットワーク(NN)の7つのモデルを使用してパフォーマンスを評価する。
MAE、R-squared、MSE、RMSEといった主要なメトリクスは、異なる時間スケールでベンチマークを確立するために使用される。
これらのベンチマークに基づいて、逐次的および木に基づくアプローチの強みを組み合わせたアンサンブルモデルを構築する。
実験の結果,提案手法は個々のモデルと比較して精度を10~15%向上し,市場の変化に伴う誤差を低減できることがわかった。
本研究では、財務予測のためのアンサンブル手法の可能性を強調し、新しい機械学習技術を統合するための柔軟な設計を提供する。
関連論文リスト
- An Advanced Ensemble Deep Learning Framework for Stock Price Prediction Using VAE, Transformer, and LSTM Model [4.097563258332958]
本研究では,3つの先進ニューラルネットワークアーキテクチャを組み合わせることで,株価予測のための最先端の深層学習フレームワークを提案する。
このフレームワークは豊富な技術的指標を使用し、現在の市場状況に基づいて予測器をスケールする。
金融専門家や学者にとって、アルゴリズム取引、リスク分析、制御と意思決定に非常に重要な応用がある。
論文 参考訳(メタデータ) (2025-03-28T07:20:40Z) - Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis [4.833815605196965]
本稿では、長寿命メモリ(LSTM)ネットワークとグラフニューラルネットワーク(GNN)を統合した新しいハイブリッドモデルを提案する。
LSTMコンポーネントは、株価データの時間的パターンを積極的に捉え、金融市場の時系列ダイナミクスを効果的にモデル化する。
実験の結果, LSTM-GNNモデルでは平均2乗誤差(MSE)が0.00144であることがわかった。
論文 参考訳(メタデータ) (2025-02-19T15:09:13Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - 1D-CapsNet-LSTM: A Deep Learning-Based Model for Multi-Step Stock Index
Forecasting [6.05458608266581]
本研究では,多段階株価指数予測のためのLSTMネットワークに1D CapsNetを統合する可能性を検討する。
この目的のために、1D CapsNetを用いて高レベルのカプセルを生成するハイブリッド1D-CapsNet-LSTMモデルが導入された。
提案した1D-CapsNet-LSTMモデルは、ベースラインモデルを2つの重要な側面で一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-03T14:33:34Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
本稿では,最先端の結果を生み出すスパイクニューラルネットワークのアンサンブルを構築する方法について述べる。
MNIST, NMNIST, DVS Gestureデータセットの分類精度は98.71%, 100.0%, 99.09%である。
我々は、スパイキングニューラルネットワークをGLM予測器として形式化し、ターゲットドメインに適した表現を識別する。
論文 参考訳(メタデータ) (2020-10-15T17:45:18Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
組込み畳み込みLSTM(E NeuralTM)と呼ばれる新しいLSTM変種を提案する。
ETMでは、異なる1次元の畳み込みの群がLSTM構造に埋め込まれている。
RUL推定のために広く用いられているいくつかのベンチマークデータセットに対する最先端のアプローチよりも,提案したEMMアプローチの方が優れていることを示す。
論文 参考訳(メタデータ) (2020-08-10T08:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。