MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration
- URL: http://arxiv.org/abs/2505.23224v3
- Date: Fri, 27 Jun 2025 08:40:06 GMT
- Title: MMBoundary: Advancing MLLM Knowledge Boundary Awareness through Reasoning Step Confidence Calibration
- Authors: Zhitao He, Sandeep Polisetty, Zhiyuan Fan, Yuchen Huang, Shujin Wu, Yi R. Fung,
- Abstract summary: We present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration.<n>In addition to supervised fine-tuning, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge.<n> Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics.
- Score: 2.1824579248418017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, multimodal large language models (MLLMs) have made significant progress but continue to face inherent challenges in multimodal reasoning, which requires multi-level (e.g., perception, reasoning) and multi-granular (e.g., multi-step reasoning chain) advanced inferencing. Prior work on estimating model confidence tends to focus on the overall response for training and calibration, but fails to assess confidence in each reasoning step, leading to undesirable hallucination snowballing. In this work, we present MMBoundary, a novel framework that advances the knowledge boundary awareness of MLLMs through reasoning step confidence calibration. To achieve this, we propose to incorporate complementary textual and cross-modal self-rewarding signals to estimate confidence at each step of the MLLM reasoning process. In addition to supervised fine-tuning MLLM on this set of self-rewarded confidence estimation signal for initial confidence expression warm-up, we introduce a reinforcement learning stage with multiple reward functions for further aligning model knowledge and calibrating confidence at each reasoning step, enhancing reasoning chain self-correction. Empirical results show that MMBoundary significantly outperforms existing methods across diverse domain datasets and metrics, achieving an average of 7.5% reduction in multimodal confidence calibration errors and up to 8.3% improvement in task performance.
Related papers
- How Overconfidence in Initial Choices and Underconfidence Under Criticism Modulate Change of Mind in Large Language Models [28.62988505317048]
Large language models (LLMs) exhibit strikingly conflicting behaviors.<n>LLMs can appear steadfastly overconfident in their initial answers whilst being prone to excessive doubt when challenged.<n>We show that LLMs exhibit a pronounced choice-supportive bias that reinforces and boosts their estimate of confidence in their answer.
arXiv Detail & Related papers (2025-07-03T18:57:43Z) - Seeing is Believing, but How Much? A Comprehensive Analysis of Verbalized Calibration in Vision-Language Models [15.158475816860427]
Uncertainty is essential for assessing the reliability and trustworthiness of modern AI systems.<n> verbalized uncertainty, where models express their confidence through natural language, has emerged as a lightweight and interpretable solution.<n>However, its effectiveness in vision-language models (VLMs) remains insufficiently studied.
arXiv Detail & Related papers (2025-05-26T17:16:36Z) - Towards Harmonized Uncertainty Estimation for Large Language Models [22.58034272573749]
It is essential to quantify the reliability of their generations through uncertainty estimation.<n>We propose CUE (Corrector for Uncertainty Estimation): A straightforward yet effective method that employs a lightweight model trained on data aligned with the target LLM's performance to adjust uncertainty scores.
arXiv Detail & Related papers (2025-05-25T10:17:57Z) - Calibrating Uncertainty Quantification of Multi-Modal LLMs using Grounding [48.92310906093414]
We introduce a novel approach for calibrating uncertainty quantification (UQ) tailored for multi-modal large language models (LLMs)<n>We leverage cross-modal consistency in addition to self-consistency to improve the calibration of the multi-modal models.<n>We evaluate the proposed approach across multiple multi-modal tasks, such as medical question answering (Slake) and visual question answering (VQAv2), considering multi-modal models such as LLaVA-Med and LLaVA.
arXiv Detail & Related papers (2025-04-30T19:19:21Z) - Towards Fully Exploiting LLM Internal States to Enhance Knowledge Boundary Perception [58.62352010928591]
Large language models (LLMs) exhibit impressive performance across diverse tasks but often struggle to accurately gauge their knowledge boundaries.<n>This paper explores leveraging LLMs' internal states to enhance their perception of knowledge boundaries from efficiency and risk perspectives.
arXiv Detail & Related papers (2025-02-17T11:11:09Z) - SAUP: Situation Awareness Uncertainty Propagation on LLM Agent [52.444674213316574]
Large language models (LLMs) integrated into multistep agent systems enable complex decision-making processes across various applications.<n>Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multistep decision-making process and the dynamic interactions between agents and their environments.<n>We propose SAUP, a novel framework that propagates uncertainty through each step of an LLM-based agent's reasoning process.
arXiv Detail & Related papers (2024-12-02T01:31:13Z) - Confidence Estimation for LLM-Based Dialogue State Tracking [9.305763502526833]
Estimation of a model's confidence on its outputs is critical for Conversational AI systems based on large language models (LLMs)
We provide an exhaustive exploration of methods, including approaches proposed for open- and closed-weight LLMs.
Our findings suggest that fine-tuning open-weight LLMs can result in enhanced AUC performance, indicating better confidence score calibration.
arXiv Detail & Related papers (2024-09-15T06:44:26Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrust is the first comprehensive and unified benchmark on the trustworthiness of MLLMs.<n>Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts.<n>Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks.
arXiv Detail & Related papers (2024-06-11T08:38:13Z) - Confidence Calibration and Rationalization for LLMs via Multi-Agent Deliberation [18.815226646364476]
Existing calibration methods for large language models (LLMs) focus on estimating or eliciting individual confidence without taking full advantage of the "Collective Wisdom"
We propose Collaborative, a post-hoc training-free calibration strategy that leverages the collaborative and expressive capabilities of multiple tool-augmented LLM agents in a simulated group deliberation process.
arXiv Detail & Related papers (2024-04-14T02:40:43Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - A Survey of Confidence Estimation and Calibration in Large Language Models [86.692994151323]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains.
Despite their impressive performance, they can be unreliable due to factual errors in their generations.
Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations.
arXiv Detail & Related papers (2023-11-14T16:43:29Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z) - Calibrating Multimodal Learning [94.65232214643436]
We propose a novel regularization technique, i.e., Calibrating Multimodal Learning (CML) regularization, to calibrate the predictive confidence of previous methods.
This technique could be flexibly equipped by existing models and improve the performance in terms of confidence calibration, classification accuracy, and model robustness.
arXiv Detail & Related papers (2023-06-02T04:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.