Automated Modeling Method for Pathloss Model Discovery
- URL: http://arxiv.org/abs/2505.23383v2
- Date: Thu, 05 Jun 2025 08:12:40 GMT
- Title: Automated Modeling Method for Pathloss Model Discovery
- Authors: Ahmad Anaqreh, Shih-Kai Chou, Mihael Mohorčič, Thomas Lagkas, Carolina Fortuna,
- Abstract summary: This paper proposes a novel approach that accelerates the discovery of path loss models while maintaining interpretability.<n>We examine two techniques: one based on Deep Symbolic Regression, offering full interpretability, and the second based on Kolmogorov-Arnold Networks, providing two levels of interpretability.<n>Our results show that Kolmogorov-Arnold Networks achieve the coefficient of determination value R2 close to 1 with minimal prediction error, while Deep Symbolic Regression generates compact models with moderate accuracy.
- Score: 1.7373039830910548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling propagation is the cornerstone for designing and optimizing next-generation wireless systems, with a particular emphasis on 5G and beyond era. Traditional modeling methods have long relied on statistic-based techniques to characterize propagation behavior across different environments. With the expansion of wireless communication systems, there is a growing demand for methods that guarantee the accuracy and interpretability of modeling. Artificial intelligence (AI)-based techniques, in particular, are increasingly being adopted to overcome this challenge, although the interpretability is not assured with most of these methods. Inspired by recent advancements in AI, this paper proposes a novel approach that accelerates the discovery of path loss models while maintaining interpretability. The proposed method automates the formulation, evaluation, and refinement of the model, facilitating the discovery of the model. We examine two techniques: one based on Deep Symbolic Regression, offering full interpretability, and the second based on Kolmogorov-Arnold Networks, providing two levels of interpretability. Both approaches are evaluated on two synthetic and two real-world datasets. Our results show that Kolmogorov-Arnold Networks achieve the coefficient of determination value R^2 close to 1 with minimal prediction error, while Deep Symbolic Regression generates compact models with moderate accuracy. Moreover, on the selected examples, we demonstrate that automated methods outperform traditional methods, achieving up to 75% reduction in prediction errors, offering accurate and explainable solutions with potential to increase the efficiency of discovering next-generation path loss models.
Related papers
- Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Joint Explainability-Performance Optimization With Surrogate Models for AI-Driven Edge Services [3.8688731303365533]
This paper explores the balance between the predictive accuracy of complex AI models and their approximation by surrogate ones.<n>We introduce a new algorithm based on multi-objective optimization (MOO) to simultaneously minimize both the complex model's prediction error and the error between its outputs and those of the surrogate.
arXiv Detail & Related papers (2025-03-10T19:04:09Z) - Derivative-Free Diffusion Manifold-Constrained Gradient for Unified XAI [59.96044730204345]
We introduce Derivative-Free Diffusion Manifold-Constrainted Gradients (FreeMCG)
FreeMCG serves as an improved basis for explainability of a given neural network.
We show that our method yields state-of-the-art results while preserving the essential properties expected of XAI tools.
arXiv Detail & Related papers (2024-11-22T11:15:14Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Toward Physically Plausible Data-Driven Models: A Novel Neural Network
Approach to Symbolic Regression [2.7071541526963805]
This paper proposes a novel neural network-based symbolic regression method.
It constructs physically plausible models based on even very small training data sets and prior knowledge about the system.
We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system.
arXiv Detail & Related papers (2023-02-01T22:05:04Z) - Adversarial Robustness Assessment of NeuroEvolution Approaches [1.237556184089774]
We evaluate the robustness of models found by two NeuroEvolution approaches on the CIFAR-10 image classification task.
Our results show that when the evolved models are attacked with iterative methods, their accuracy usually drops to, or close to, zero.
Some of these techniques can exacerbate the perturbations added to the original inputs, potentially harming robustness.
arXiv Detail & Related papers (2022-07-12T10:40:19Z) - Rethinking Bayesian Learning for Data Analysis: The Art of Prior and
Inference in Sparsity-Aware Modeling [20.296566563098057]
Sparse modeling for signal processing and machine learning has been at the focus of scientific research for over two decades.
This article reviews some recent advances in incorporating sparsity-promoting priors into three popular data modeling tools.
arXiv Detail & Related papers (2022-05-28T00:43:52Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.