論文の概要: Automated Structured Radiology Report Generation
- arxiv url: http://arxiv.org/abs/2505.24223v2
- Date: Mon, 02 Jun 2025 07:21:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 13:48:30.081278
- Title: Automated Structured Radiology Report Generation
- Title(参考訳): 自動構造ラジオロジーレポート生成
- Authors: Jean-Benoit Delbrouck, Justin Xu, Johannes Moll, Alois Thomas, Zhihong Chen, Sophie Ostmeier, Asfandyar Azhar, Kelvin Zhenghao Li, Andrew Johnston, Christian Bluethgen, Eduardo Reis, Mohamed Muneer, Maya Varma, Curtis Langlotz,
- Abstract要約: 本稿では,自由テキストラジオロジーレポートを標準化形式に再構成する新しいタスクであるStructured Radiology Report Generation (SRRG)を紹介する。
我々は,大規模言語モデル (LLM) を用いてレポートを再構成し,厳密な構造化されたレポートデシダタに追従して,新しいデータセットを作成する。
また,55ラベルを用いた詳細な疾患分類モデルであるSRR-BERTを導入し,構造化レポートのより正確かつ臨床的に評価した。
- 参考スコア(独自算出の注目度): 11.965406008391371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated radiology report generation from chest X-ray (CXR) images has the potential to improve clinical efficiency and reduce radiologists' workload. However, most datasets, including the publicly available MIMIC-CXR and CheXpert Plus, consist entirely of free-form reports, which are inherently variable and unstructured. This variability poses challenges for both generation and evaluation: existing models struggle to produce consistent, clinically meaningful reports, and standard evaluation metrics fail to capture the nuances of radiological interpretation. To address this, we introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format, ensuring clarity, consistency, and structured clinical reporting. We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata. Additionally, we introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports. To assess report quality, we propose F1-SRR-BERT, a metric that leverages SRR-BERT's hierarchical disease taxonomy to bridge the gap between free-text variability and structured clinical reporting. We validate our dataset through a reader study conducted by five board-certified radiologists and extensive benchmarking experiments.
- Abstract(参考訳): 胸部X線(CXR)画像から自動放射線診断レポートを生成することにより,臨床効率の向上と放射線技師の作業負荷の低減が期待できる。
しかし、一般に公開されているMIMIC-CXRやCheXpert Plusを含むほとんどのデータセットは、本質的に可変で非構造化なフリーフォームレポートで構成されている。
既存のモデルは一貫性があり、臨床的に意味のあるレポートを作成するのに苦労し、標準的な評価基準は、放射線学的解釈のニュアンスを捉えるのに失敗する。
そこで我々は,自由テキストラジオグラフィーレポートを標準化されたフォーマットに書き換え,明瞭さ,一貫性,構造化された臨床報告を確実にする新しいタスクであるStructured Radiology Report Generation(SRRG)を紹介した。
我々は,大規模言語モデル (LLM) を用いてレポートを再構成し,厳密な構造化されたレポートデシダタに追従して,新しいデータセットを作成する。
さらに,55ラベルを用いた詳細な疾患分類モデルであるSRR-BERTを導入し,構造化レポートのより正確かつ臨床的に評価した。
報告の質を評価するために,SRR-BERTの階層的疾患分類を利用した指標であるF1-SRR-BERTを提案する。
5人の放射線技師と広範囲なベンチマーク実験により,本データセットの有効性を検証した。
関連論文リスト
- CLEAR: A Clinically-Grounded Tabular Framework for Radiology Report Evaluation [19.416198842242856]
専門ラベルを用いた臨床評価フレームワークと放射線診断報告評価のための属性レベル比較(CLEAR)について紹介する。
CLEARは、報告書が医療状況の有無を正確に特定できるかどうかを調べる。
CLEARの臨床的アライメントを測定するため,MIMIC-CXRから得られた100個の胸部X線所見のデータセットであるCLEAR-Benchを開発した。
論文 参考訳(メタデータ) (2025-05-22T07:32:12Z) - Improving Radiology Report Conciseness and Structure via Local Large Language Models [0.0]
本研究の目的は, 簡潔さと構造的構造を向上し, 放射線診断を向上することである。
この構造化されたアプローチにより、医師は関連する情報を素早く見つけ出し、レポートの有用性を高めることができる。
我々は、Mixtral、Mistral、Llamaなどの大規模言語モデル(LLM)を用いて、簡潔で構造化されたレポートを生成する。
論文 参考訳(メタデータ) (2024-11-06T19:00:57Z) - ReXErr: Synthesizing Clinically Meaningful Errors in Diagnostic Radiology Reports [1.9106067578277455]
胸部X線レポート内の代表的エラーを生成するために,大規模言語モデルを活用する手法であるReXErrを紹介する。
我々は、人間とAIが生成したレポートでよくある誤りを捉えるエラーカテゴリを開発した。
本手法は, 臨床応用可能性を維持しつつ, 多様な誤差を注入する新しいサンプリング手法を用いている。
論文 参考訳(メタデータ) (2024-09-17T01:42:39Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
本稿では,Radiological Report (Text) Evaluation (RaTEScore) として,新しい実体認識尺度を提案する。
RaTEScoreは、診断結果や解剖学的詳細などの重要な医療機関を強調し、複雑な医学的同義語に対して堅牢であり、否定表現に敏感である。
我々の評価は、RaTEScoreが既存の指標よりも人間の嗜好とより密接に一致していることを示し、確立された公開ベンチマークと、新たに提案したRaTE-Evalベンチマークの両方で検証した。
論文 参考訳(メタデータ) (2024-06-24T17:49:28Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
胸部X線レポート生成のための新しい方法である textbfStructural textbfEntities 抽出法と textbfIncorporation (SEI) を考案した。
我々は、レポートにおけるプレゼンテーションスタイルの語彙を排除するために、構造エンティティ抽出(SEE)アプローチを採用する。
我々は,X線画像,類似の歴史的症例,患者固有の指標からの情報を統合するクロスモーダル融合ネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T01:29:47Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
構造化された報告テンプレートにおける文によって定義される臨床所見を予測する手法を提案する。
この手法は、胸部X線と関連する自由テキストラジオグラフィーレポートを用いて、対照的な言語画像モデルを訓練することを含む。
その結果, 訓練用画像レベルのアノテーションが限られている場合でも, 胸部X線における重症度評価の構造化された報告タスクを達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-29T16:31:39Z) - CLARA: Clinical Report Auto-completion [56.206459591367405]
CLARA(CLinicit Al It Report It Auto-Completion)は、医師のアンカーワードと部分的に完成した文に基づいて、文章でレポートを生成するインタラクティブな方法である。
実験では,X線で0.393 CIDEr,0.248 BLEU-4,脳波で0.482 CIDEr,0.491 BLEU-4を得た。
論文 参考訳(メタデータ) (2020-02-26T18:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。