Alternate Groundwater Modelling Strategies: A Multi-Faceted Data-Driven Approach
- URL: http://arxiv.org/abs/2505.24235v1
- Date: Fri, 30 May 2025 05:51:13 GMT
- Title: Alternate Groundwater Modelling Strategies: A Multi-Faceted Data-Driven Approach
- Authors: Muralidharan K., Agniva Das, Shrey Pandya, Jong Min Kim,
- Abstract summary: This paper focuses on the validation of statistical methodologies that are in practice and continue to be at the earliest disposal of the researcher.<n>Traditional time-series models and modern neural networks may be a viable option to analyze and make viable forecasts from data commonly available in this domain.
- Score: 2.058594049312714
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The impact of statistical methodologies on studying groundwater has been significant in the last several decades, due to cheaper computational abilities and presence of technologies that enable us to extract and measure more and more data. This paper focuses on the validation of statistical methodologies that are in practice and continue to be at the earliest disposal of the researcher, demonstrating how traditional time-series models and modern neural networks may be a viable option to analyze and make viable forecasts from data commonly available in this domain, and suggesting a copula-based strategy to obtain directional dependencies of groundwater level, spatially. This paper also proposes a sphere of model validation, seldom addressed in this domain: the model longevity or the model shelf-life. Use of such validation techniques not only ensure lower computational cost while maintaining reasonably high accuracy, but also, in some cases, ensure robust predictions or forecasts, and assist in comparing multiple models.
Related papers
- Data-Driven Surrogate Modeling Techniques to Predict the Effective Contact Area of Rough Surface Contact Problems [39.979007027634196]
The effective contact area plays a critical role in multi-physics phenomena such as wear, sealing, and thermal or electrical conduction.<n>This study proposes a surrogate modeling framework for predicting the effective contact area using fast-to-evaluate data-driven techniques.
arXiv Detail & Related papers (2025-04-24T08:15:46Z) - Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - A step towards the integration of machine learning and small area
estimation [0.0]
We propose a predictor supported by machine learning algorithms which can be used to predict any population or subpopulation characteristics.
We study only small departures from the assumed model, to show that our proposal is a good alternative in this case as well.
What is more, we propose the method of the accuracy estimation of machine learning predictors, giving the possibility of the accuracy comparison with classic methods.
arXiv Detail & Related papers (2024-02-12T09:43:17Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
Pressure and flow estimation in Water Distribution Networks (WDN) allows water management companies to optimize their control operations.
We combine physics-based modeling and Graph Neural Networks (GNN), a data-driven approach, to address the pressure estimation problem.
Our GNN-based model estimates the pressure of a large-scale WDN in The Netherlands with a MAE of 1.94mH$$O and a MAPE of 7%.
arXiv Detail & Related papers (2023-11-17T15:30:12Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Comparative Study of Predicting Stock Index Using Deep Learning Models [0.0]
This study evaluates traditional forecasting methods, such as ARIMA, SARIMA, and SARIMAX, and newer neural network approaches, such as DF-RNN, DSSM, and Deep AR.
Results show that Deep AR outperformed all other conventional deep learning and traditional approaches, with the lowest MAPE of 0.01 and RMSE of 189.
arXiv Detail & Related papers (2023-06-24T10:38:08Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
Our research introduces a method for uncertainty estimation.
It enhances any base regression model with reasonable uncertainty estimates.
Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals.
arXiv Detail & Related papers (2023-02-06T14:52:56Z) - Assessment of Spatio-Temporal Predictors in the Presence of Missing and Heterogeneous Data [23.280400290071732]
Deep learning approaches achieve outstanding predictive performance in modeling modern data, despite increasing complexity and scale.<n> evaluating the quality of predictive models becomes more challenging as traditional statistical assumptions often no longer hold.<n>This paper introduces a residual analysis framework designed to assess the optimality of temporal-temporal predictive neural models.
arXiv Detail & Related papers (2023-02-03T12:55:08Z) - Statistical Deep Learning for Spatial and Spatio-Temporal Data [0.0]
We present an overview of traditional statistical and machine learning perspectives for modeling spatial andtemporal data.
We then focus on a variety of hybrid models that have recently been developed for latent process, data, and parameter specifications.
These hybrid models integrate modeling ideas with deep neural network models in order to take advantage of the strengths of each modeling paradigm.
arXiv Detail & Related papers (2022-06-05T16:49:10Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - The Lifecycle of a Statistical Model: Model Failure Detection,
Identification, and Refitting [26.351782287953267]
We develop tools and theory for detecting and identifying regions of the covariate space (subpopulations) where model performance has begun to degrade.
We present empirical results with three real-world data sets.
We complement these empirical results with theory proving that our methodology is minimax optimal for recovering anomalous subpopulations.
arXiv Detail & Related papers (2022-02-08T22:02:31Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.