STAR-Net: An Interpretable Model-Aided Network for Remote Sensing Image Denoising
- URL: http://arxiv.org/abs/2505.24327v1
- Date: Fri, 30 May 2025 08:09:31 GMT
- Title: STAR-Net: An Interpretable Model-Aided Network for Remote Sensing Image Denoising
- Authors: Jingjing Liu, Jiashun Jin, Xianchao Xiu, Jianhua Zhang, Wanquan Liu,
- Abstract summary: We propose a novel RSI denoising method named sparse tensor-aided representation network (STAR-Net)<n>We extend STAR-Net to a sparse variant called STAR-Net-S to deal with the interference caused by non-Gaussian noise in original RSI for the purpose of improving robustness.<n> Comprehensive experiments on synthetic and real-world datasets demonstrate that STAR-Net and STAR-Net-S outperform state-of-the-art RSI denoising methods.
- Score: 19.319042523414183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote sensing image (RSI) denoising is an important topic in the field of remote sensing. Despite the impressive denoising performance of RSI denoising methods, most current deep learning-based approaches function as black boxes and lack integration with physical information models, leading to limited interpretability. Additionally, many methods may struggle with insufficient attention to non-local self-similarity in RSI and require tedious tuning of regularization parameters to achieve optimal performance, particularly in conventional iterative optimization approaches. In this paper, we first propose a novel RSI denoising method named sparse tensor-aided representation network (STAR-Net), which leverages a low-rank prior to effectively capture the non-local self-similarity within RSI. Furthermore, we extend STAR-Net to a sparse variant called STAR-Net-S to deal with the interference caused by non-Gaussian noise in original RSI for the purpose of improving robustness. Different from conventional iterative optimization, we develop an alternating direction method of multipliers (ADMM)-guided deep unrolling network, in which all regularization parameters can be automatically learned, thus inheriting the advantages of both model-based and deep learning-based approaches and successfully addressing the above-mentioned shortcomings. Comprehensive experiments on synthetic and real-world datasets demonstrate that STAR-Net and STAR-Net-S outperform state-of-the-art RSI denoising methods.
Related papers
- SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Unsupervised Image Denoising in Real-World Scenarios via
Self-Collaboration Parallel Generative Adversarial Branches [28.61750072026107]
Deep learning methods have shown remarkable performance in image denoising, particularly when trained on large-scale paired datasets.
Deep learning methods have shown remarkable performance in image denoising, particularly when trained on large-scale paired datasets.
However, acquiring such paired datasets for real-world scenarios poses a significant challenge.
arXiv Detail & Related papers (2023-08-13T14:04:46Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
Hyperspectral images (HSIs) are often quite noisy because of narrow band spectral filtering.
To reduce the noise in HSI data cubes, both model-driven and learning-based denoising algorithms have been proposed.
This paper proposes a Degradation-Noise-Aware Unfolding Network (DNA-Net) that addresses these issues.
arXiv Detail & Related papers (2023-05-06T13:28:20Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems [11.190815358585137]
Joint channel estimation and signal detection is crucial in frequency division multiplexing systems.
Traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios.
Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain.
arXiv Detail & Related papers (2023-03-07T06:34:04Z) - Fast Noise Removal in Hyperspectral Images via Representative
Coefficient Total Variation [38.23169948685068]
Mining structural priors in data is a widely recognized technique for hyperspectral image (HSI) denoising tasks.
Model-based methods have good generalization ability, while the runtime cannot meet the fast processing requirements.
We propose a novel regularizer named Representative Coefficient Total Variation (RCTV) to simultaneously characterize the low rank and local smooth properties.
arXiv Detail & Related papers (2022-11-03T14:06:37Z) - Universal adversarial perturbation for remote sensing images [41.54094422831997]
This paper proposes a novel method combining an encoder-decoder network with an attention mechanism to verify that UAP makes the RSI classification model error classification.
The experimental results show that the UAP can make the RSI misclassify, and the attack success rate (ASR) of our proposed method on the RSI data set is as high as 97.35%.
arXiv Detail & Related papers (2022-02-22T06:43:28Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Improving noise robust automatic speech recognition with single-channel
time-domain enhancement network [100.1041336974175]
We show that a single-channel time-domain denoising approach can significantly improve ASR performance.
We show that single-channel noise reduction can still improve ASR performance.
arXiv Detail & Related papers (2020-03-09T09:36:31Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.