A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems
- URL: http://arxiv.org/abs/2303.03678v3
- Date: Fri, 21 Jun 2024 02:02:09 GMT
- Title: A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection in OFDM Systems
- Authors: Haocheng Ju, Haimiao Zhang, Lin Li, Xiao Li, Bin Dong,
- Abstract summary: Joint channel estimation and signal detection is crucial in frequency division multiplexing systems.
Traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios.
Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain.
- Score: 11.190815358585137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint channel estimation and signal detection (JCESD) is crucial in orthogonal frequency division multiplexing (OFDM) systems, but traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios. Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain. Hence, the development of a robust and low-complexity model that can deliver excellent performance across a wide range of SNRs is highly desirable. In this paper, we aim to establish a benchmark where traditional algorithms and DL methods are validated on different channel models, Doppler, and SNR settings, particularly focusing on the semi-blind setting. In particular, we propose a new DL model where the backbone network is formed by unrolling the iterative algorithm, and the hyperparameters are estimated by hypernetworks. Additionally, we adapt a lightweight DenseNet to the task of JCESD for comparison. We evaluate different methods in three aspects: generalization in terms of bit error rate (BER), robustness, and complexity. Our results indicate that DL approaches outperform traditional algorithms in the challenging low-SNR setting, while the iterative algorithm performs better in high-SNR settings. Furthermore, the iterative algorithm is more robust in the presence of carrier frequency offset, whereas DL methods excel when signals are corrupted by asymmetric Gaussian noise.
Related papers
- Hyperparameter Estimation for Sparse Bayesian Learning Models [1.0172874946490507]
Aparse Bayesian Learning (SBL) models are extensively used in signal processing and machine learning for promoting sparsity through hierarchical priors.
This paper presents a framework for the improvement of SBL models for various objective functions.
A novel algorithm is introduced showing enhanced efficiency, especially under signal noise ratios.
arXiv Detail & Related papers (2024-01-04T21:24:01Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
Overfitting to the source domain is a common issue in gradient-based training of deep neural networks.
We propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters.
arXiv Detail & Related papers (2023-10-11T10:21:34Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Study of Robust Sparsity-Aware RLS algorithms with Jointly-Optimized
Parameters for Impulsive Noise Environments [0.0]
The proposed algorithm generalizes multiple algorithms only by replacing the specified criterion of robustness and sparsity-aware penalty.
By jointly optimizing the forgetting factor and the sparsity penalty parameter, we develop the jointly-optimized S-RRLS (JO-S-RRLS) algorithm.
Simulations in impulsive noise scenarios demonstrate that the proposed S-RRLS and JO-S-RRLS algorithms outperform existing techniques.
arXiv Detail & Related papers (2022-04-09T01:13:26Z) - Recursive Least Squares Policy Control with Echo State Network [17.555929738017344]
We propose two novel policy control algorithms, ESNRLS-Q and ESNRLS-Sarsa.
To reduce the correlation of training samples, we use the leaky integrator ESN and the mini-batch learning mode.
To make RLS suitable for training ESN in mini-batch mode, we present a new mean-approximation method for updating the RLS correlation matrix.
arXiv Detail & Related papers (2022-01-13T03:41:07Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - ANN-Based Detection in MIMO-OFDM Systems with Low-Resolution ADCs [0.0]
We propose a multi-layer artificial neural network (ANN) that is trained with the Levenberg-Marquardt algorithm for use in signal detection.
We consider a blind detection scheme where data symbol estimation is carried out without knowing the channel state information at the receiver.
arXiv Detail & Related papers (2020-01-31T03:38:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.