ClueAnchor: Clue-Anchored Knowledge Reasoning Exploration and Optimization for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2505.24388v1
- Date: Fri, 30 May 2025 09:18:08 GMT
- Title: ClueAnchor: Clue-Anchored Knowledge Reasoning Exploration and Optimization for Retrieval-Augmented Generation
- Authors: Hao Chen, Yukun Yan, Sen Mei, Wanxiang Che, Zhenghao Liu, Qi Shi, Xinze Li, Yuchun Fan, Pengcheng Huang, Qiushi Xiong, Zhiyuan Liu, Maosong Sun,
- Abstract summary: We propose ClueAnchor, a novel framework for enhancing Retrieval-Augmented Generation (RAG)<n>ClueAnchor extracts key clues from retrieved content and generates multiple reasoning paths based on different knowledge configurations.<n>Experiments show that ClueAnchor significantly outperforms prior RAG baselines in reasoning completeness and robustness.
- Score: 82.28147821286709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge to improve factuality. However, existing RAG systems frequently underutilize the retrieved documents, failing to extract and integrate the key clues needed to support faithful and interpretable reasoning, especially in cases where relevant evidence is implicit, scattered, or obscured by noise. To address this issue, we propose ClueAnchor, a novel framework for enhancing RAG via clue-anchored reasoning exploration and optimization. ClueAnchor extracts key clues from retrieved content and generates multiple reasoning paths based on different knowledge configurations, optimizing the model by selecting the most effective one through reward-based preference optimization. Experiments show that ClueAnchor significantly outperforms prior RAG baselines in reasoning completeness and robustness. Further analysis confirms its strong resilience to noisy or partially relevant retrieved content, as well as its capability to identify supporting evidence even in the absence of explicit clue supervision during inference.
Related papers
- Bridging Search and Recommendation through Latent Cross Reasoning [10.13775540633345]
We introduce a latent cross reasoning framework that first encodes user S&R histories to capture global interests and then iteratively reasons over search behaviors to extract signals beneficial for recommendation.<n>Experiments on public benchmarks demonstrate consistent improvements over strong baselines, validating the importance of reasoning in enhancing search-aware recommendation.
arXiv Detail & Related papers (2025-08-06T07:28:11Z) - Learning to Extract Rational Evidence via Reinforcement Learning for Retrieval-Augmented Generation [37.47571308389908]
Retrieval-Augmented Generation (RAG) effectively improves the accuracy of Large Language Models (LLMs)<n>Previous methods extract evidence straightforwardly without explicit thinking, which risks filtering out key clues and struggles with generalization.<n>We propose Evi Omni, which learns to extract rational evidence by (1) explicitly reasoning to identify potential cues within retrieval contents first, and then (2) consciously extracting to avoid omitting any key cues helpful for answering questions.
arXiv Detail & Related papers (2025-07-21T13:03:55Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - Coordinating Search-Informed Reasoning and Reasoning-Guided Search in Claim Verification [16.655011153015202]
We propose Hierarchical Agent Reasoning and Information Search (HARIS) for multi-hop claim verification.<n>HARIS consists of a high-level reasoning agent that focuses on constructing the main verification chain, generating factual questions when more information is needed, and a low-level search agent that iteratively retrieves more information.<n> Experimental results on the EX-FEVER and HOVER benchmarks demonstrate that HARIS achieves strong performance.
arXiv Detail & Related papers (2025-06-09T08:11:43Z) - Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs [25.800565994304847]
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir.<n>Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources.<n>We propose AutoRefine, a reinforcement learning framework that adopts a new search-and-refine-during-think'' paradigm.
arXiv Detail & Related papers (2025-05-16T14:11:29Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.<n>We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
We propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP)<n>By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step.<n> Experiments show that DeepRAG improves retrieval efficiency while improving answer accuracy by 21.99%, demonstrating its effectiveness in optimizing retrieval-augmented reasoning.
arXiv Detail & Related papers (2025-02-03T08:22:45Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Compressing Long Context for Enhancing RAG with AMR-based Concept Distillation [17.156915103545728]
Large Language Models (LLMs) have made significant strides in information acquisition.
Retrieval Augmented Generation (RAG) addresses this limitation by incorporating external, non-parametric knowledge.
We propose a novel concept-based RAG framework with the Abstract Representation (AMR)-based concept distillation algorithm.
arXiv Detail & Related papers (2024-05-06T00:18:43Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - The Power of Noise: Redefining Retrieval for RAG Systems [19.387105120040157]
Retrieval-Augmented Generation (RAG) has emerged as a method to extend beyond the pre-trained knowledge of Large Language Models.
We focus on the type of passages IR systems within a RAG solution should retrieve.
arXiv Detail & Related papers (2024-01-26T14:14:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.