Complex wave functions, CPT and quantum field theory for classical generalized Ising models
- URL: http://arxiv.org/abs/2505.24392v1
- Date: Fri, 30 May 2025 09:23:50 GMT
- Title: Complex wave functions, CPT and quantum field theory for classical generalized Ising models
- Authors: Christof Wetterich,
- Abstract summary: The quantum field theory concept of a complex wave function is useful for understanding the information transport in classical statistical generalized Ising models.<n>A subclass of generalized Ising models are cellular automata (PCA) with deterministic updating and probabilistic initial conditions.<n>For information theory the quantum formalism for PCA sheds new light on deterministic computing or signal processing with probabilistic input.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum or quantum field theory concept of a complex wave function is useful for understanding the information transport in classical statistical generalized Ising models. We relate complex conjugation to the discrete transformations charge conjugation ($C$), parity ($P$) and time reversal ($T$). A subclass of generalized Ising models are probabilistic cellular automata (PCA) with deterministic updating and probabilistic initial conditions. Two-dimensional PCA correspond to discretized quantum field theories for Majorana--Weyl, Weyl or Dirac fermions. Momentum and energy are conserved statistical observables. For PCA describing free massless fermions we investigate the vacuum and field operators for particle excitations. These automata admit probabilistic boundary conditions that correspond to thermal equilibrium with the quantum Fermi--Dirac distribution. PCA with updating sequences of propagation and interaction steps can realize a rich variety of discrete quantum field theories for fermions with interactions. For information theory the quantum formalism for PCA sheds new light on deterministic computing or signal processing with probabilistic input.
Related papers
- Quantum stochastic trajectories for particles and fields based on
positive P-representation [0.0]
We introduce a phase-space description based on the positive P representation for bosonic fields interacting with a system of quantum emitters.
The formalism is applicable to collective light-matter interactions and open quantum systems with decoherence.
A potential future application is the quantum mechanical description of collective spontaneous emission of an incoherently pumped ensemble of atoms.
arXiv Detail & Related papers (2023-06-30T08:38:47Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Second Response Theory: A Theoretical Formalism for the Propagation of
Quantum Superpositions [0.0]
We expand a previously developed size-extensive formalism within coupled cluster theory, called second response theory, so it propagates quantum systems.
Our theory shows strong consistency with numerically exact results for the determination of quantum mechanical observables, probabilities, and coherences.
arXiv Detail & Related papers (2023-06-13T17:33:22Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Fermionic quantum field theories as probabilistic cellular automata [0.0]
A class of fermionic quantum field theories with interactions is shown to be equivalent to probabilistic cellular automata.
Probabilistic cellular automata on a one-dimensional lattice are equivalent to two - dimensional quantum field theories for fermions.
arXiv Detail & Related papers (2021-11-12T14:01:23Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Probabilistic cellular automata for interacting fermionic quantum field
theories [0.0]
A classical local cellular automaton can describe an interacting quantum field theory for fermions.
This interacting fermionic quantum field theory obeys a unitary time evolution and shows all properties of quantum mechanics.
arXiv Detail & Related papers (2020-07-13T13:25:51Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.