RMoA: Optimizing Mixture-of-Agents through Diversity Maximization and Residual Compensation
- URL: http://arxiv.org/abs/2505.24442v1
- Date: Fri, 30 May 2025 10:23:11 GMT
- Title: RMoA: Optimizing Mixture-of-Agents through Diversity Maximization and Residual Compensation
- Authors: Zhentao Xie, Chengcheng Han, Jinxin Shi, Wenjun Cui, Xin Zhao, Xingjiao Wu, Jiabao Zhao,
- Abstract summary: We propose Residual Mixture-of-Agents (RMoA) to integrate residual connections to optimize efficiency and reliability.<n>RMoA achieves state-of-the-art performance on the benchmarks of across alignment, mathematical reasoning, code generation, and multitasking understanding.
- Score: 6.364685086217188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although multi-agent systems based on large language models show strong capabilities on multiple tasks, they are still limited by high computational overhead, information loss, and robustness. Inspired by ResNet's residual learning, we propose Residual Mixture-of-Agents (RMoA), integrating residual connections to optimize efficiency and reliability. To maximize information utilization from model responses while minimizing computational costs, we innovatively design an embedding-based diversity selection mechanism that greedily selects responses via vector similarity. Furthermore, to mitigate iterative information degradation, we introduce a Residual Extraction Agent to preserve cross-layer incremental information by capturing inter-layer response differences, coupled with a Residual Aggregation Agent for hierarchical information integration. Additionally, we propose an adaptive termination mechanism that dynamically halts processing based on residual convergence, further improving inference efficiency. RMoA achieves state-of-the-art performance on the benchmarks of across alignment, mathematical reasoning, code generation, and multitasking understanding, while significantly reducing computational overhead. Code is available at https://github.com/mindhunter01/RMoA.
Related papers
- The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks [56.37880529653111]
The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
arXiv Detail & Related papers (2025-05-14T08:18:55Z) - LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding [4.759109475818876]
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains.<n>We introduce LIFT, a novel, high-performance framework that captures multiscale information through meta-learning.<n>We also introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings.
arXiv Detail & Related papers (2025-03-19T17:00:58Z) - Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference [49.77734021302196]
We propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework.<n>To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features.<n>Results show that TOFC achieves up to 60% reduction in data transmission overhead and 50% reduction in system latency.
arXiv Detail & Related papers (2025-03-17T08:37:22Z) - USEFUSE: Uniform Stride for Enhanced Performance in Fused Layer Architecture of Deep Neural Networks [0.6435156676256051]
This study presents the Sum-of-Products (SOP) units for convolution, which utilize low-latency left-to-right bit-serial arithmetic.<n>An effective mechanism detects and skips inefficient convolutions after ReLU layers, minimizing power consumption.<n>Two designs cater to varied demands: one focuses on minimal response time for mission-critical applications, and another focuses on resource-constrained devices with comparable latency.
arXiv Detail & Related papers (2024-12-18T11:04:58Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Coarse-to-Fine Embedded PatchMatch and Multi-Scale Dynamic Aggregation
for Reference-based Super-Resolution [48.093500219958834]
We propose an Accelerated Multi-Scale Aggregation network (AMSA) for Reference-based Super-Resolution.
The proposed AMSA achieves superior performance over state-of-the-art approaches on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2022-01-12T08:40:23Z) - Adaptive Multi-Resolution Attention with Linear Complexity [18.64163036371161]
We propose a novel structure named Adaptive Multi-Resolution Attention (AdaMRA) for short.
We leverage a multi-resolution multi-head attention mechanism, enabling attention heads to capture long-range contextual information in a coarse-to-fine fashion.
To facilitate AdaMRA utilization by the scientific community, the code implementation will be made publicly available.
arXiv Detail & Related papers (2021-08-10T23:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.