Learning to Optimally Dispatch Power: Performance on a Nation-Wide Real-World Dataset
- URL: http://arxiv.org/abs/2505.24505v1
- Date: Fri, 30 May 2025 12:07:38 GMT
- Title: Learning to Optimally Dispatch Power: Performance on a Nation-Wide Real-World Dataset
- Authors: Ignacio Boero, Santiago Diaz, Tomás Vázquez, Enzo Coppes, Pablo Belzarena, Federico Larroca,
- Abstract summary: We introduce a publicly available power system dataset that includes both the structural characteristics of Uruguay's electrical grid and nearly two years of real-world operational data.<n>We assess the impact of real-world data on learning-based ORPD solutions, revealing a significant increase in prediction errors when transitioning from synthetic to actual demand and generation inputs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Optimal Reactive Power Dispatch (ORPD) problem plays a crucial role in power system operations, ensuring voltage stability and minimizing power losses. Recent advances in machine learning, particularly within the ``learning to optimize'' framework, have enabled fast and efficient approximations of ORPD solutions, typically by training models on precomputed optimization results. While these approaches have demonstrated promising performance on synthetic datasets, their effectiveness under real-world grid conditions remains largely unexplored. This paper makes two key contributions. First, we introduce a publicly available power system dataset that includes both the structural characteristics of Uruguay's electrical grid and nearly two years of real-world operational data, encompassing actual demand and generation profiles. Given Uruguay's high penetration of renewable energy, the ORPD problem has become the primary optimization challenge in its power network. Second, we assess the impact of real-world data on learning-based ORPD solutions, revealing a significant increase in prediction errors when transitioning from synthetic to actual demand and generation inputs. Our results highlight the limitations of existing models in learning under the complex statistical properties of real grid conditions and emphasize the need for more expressive architectures. By providing this dataset, we aim to facilitate further research into robust learning-based optimization techniques for power system management.
Related papers
- Energy Considerations of Large Language Model Inference and Efficiency Optimizations [28.55549828393871]
As large language models (LLMs) scale in size and adoption, their computational and environmental costs continue to rise.<n>We systematically analyze the energy implications of common inference efficiency optimizations across diverse NLP and AI workloads.<n>Our findings reveal that the proper application of relevant inference efficiency optimizations can reduce total energy use by up to 73% from unoptimized baselines.
arXiv Detail & Related papers (2025-04-24T15:45:05Z) - Smooth Handovers via Smoothed Online Learning [48.953313950521746]
We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs.<n>Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices.<n>We propose a realistic system model for smooth and accurate HOs that extends existing approaches by incorporating device and cell features on HO optimization.
arXiv Detail & Related papers (2025-01-14T13:16:33Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - A Gap in Time: The Challenge of Processing Heterogeneous IoT Data in Digitalized Buildings [15.525789412274587]
This study investigates the diverse dimensions of IoT data heterogeneity in both intra-building and inter-building contexts.
The results emphasize the critical need for multi-modal data integration, domain-informed modeling, and automated data engineering pipelines.
arXiv Detail & Related papers (2024-05-23T07:45:48Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.<n>We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.<n>We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - Proximal Policy Optimization with Graph Neural Networks for Optimal Power Flow [4.27638925658716]
Graph Neural Networks (GNN) has allowed the natural use of Machine Learning (ML) algorithms on data.<n>Deep Reinforcement Learning (DRL) is known for its powerful capability to solve complex decision-making problems.<n>We propose an architecture that learns how to solve the problem and that is at the same time able to unseen scenarios.
arXiv Detail & Related papers (2022-12-23T17:00:00Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.