論文の概要: Towards Scalable Schema Mapping using Large Language Models
- arxiv url: http://arxiv.org/abs/2505.24716v1
- Date: Fri, 30 May 2025 15:36:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.042734
- Title: Towards Scalable Schema Mapping using Large Language Models
- Title(参考訳): 大規模言語モデルを用いたスケーラブルなスキーママッピングの実現に向けて
- Authors: Christopher Buss, Mahdis Safari, Arash Termehchy, Stefan Lee, David Maier,
- Abstract要約: スキーママッピングに大規模言語モデル(LLM)を使用する際の3つの問題を特定する。
本稿では,サンプリングとアグリゲーションによる手法を提案する。
データ型プリフィルタのような戦略を緩和することを提案する。
- 参考スコア(独自算出の注目度): 14.028425711746513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing need to integrate information from a large number of diverse sources poses significant scalability challenges for data integration systems. These systems often rely on manually written schema mappings, which are complex, source-specific, and costly to maintain as sources evolve. While recent advances suggest that large language models (LLMs) can assist in automating schema matching by leveraging both structural and natural language cues, key challenges remain. In this paper, we identify three core issues with using LLMs for schema mapping: (1) inconsistent outputs due to sensitivity to input phrasing and structure, which we propose methods to address through sampling and aggregation techniques; (2) the need for more expressive mappings (e.g., GLaV), which strain the limited context windows of LLMs; and (3) the computational cost of repeated LLM calls, which we propose to mitigate through strategies like data type prefiltering.
- Abstract(参考訳): 多くの多様なソースから情報を統合する必要性が高まっているため、データ統合システムには大きなスケーラビリティ上の課題が生じる。
これらのシステムは、しばしば手書きのスキーママッピングに依存しており、ソースが進化するにつれて、複雑で、ソース固有のものであり、メンテナンスにコストがかかる。
最近の進歩は、大規模言語モデル(LLM)が構造的および自然言語的手法の両方を活用することでスキーママッチングの自動化を支援することを示唆しているが、重要な課題は残る。
本稿では,LLMをスキーママッピングに使用する上での問題点として,(1)入力フレーズや構造に対する感度による不整合出力,(2)LLMの限られたコンテキストウインドウを歪ませるより表現豊かなマッピング (e , GLaV) の必要性,(3)データ型プリフィルタのような戦略を緩和するための繰り返しLPM呼び出しの計算コスト,の3つを挙げる。
関連論文リスト
- Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB [44.057784044659726]
大規模言語モデル(LLM)により、このような検索と推論データパイプラインのプロトタイプがより簡単になった。
これはしばしば、データシステムのオーケストレーション、データムーブメントの管理、低レベルの詳細処理を含む。
我々はFlockMTLを紹介した。FlockMTLはLLM機能と検索拡張生成を深く統合した抽象化用拡張である。
論文 参考訳(メタデータ) (2025-04-01T19:48:17Z) - Distributed LLMs and Multimodal Large Language Models: A Survey on Advances, Challenges, and Future Directions [1.3638337521666275]
言語モデル (LM) は、テキストなどの大規模データセットに基づいて単語列の確率を推定することにより、言語パターンを予測する機械学習モデルである。
より大きなデータセットは一般的にLM性能を高めるが、計算能力とリソースの制約のためスケーラビリティは依然として課題である。
近年の研究では、分散トレーニングと推論を可能にする分散型技術の開発に焦点が当てられている。
論文 参考訳(メタデータ) (2025-03-20T15:18:25Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) は、言語理解、画像理解、言語と画像の接点の相互作用を評価するためのクロスモーダルなタスクである。
2つの重要な特徴を持つ新しいRECデータセットを導入する。第一に、オブジェクトカテゴリ、属性、関係性に関する詳細な推論を必要とする、制御可能な難易度で設計されている。
第二に、微粒な編集によって生成された否定的なテキストと画像が組み込まれ、既存のターゲットを拒否するモデルの能力を明示的にテストする。
論文 参考訳(メタデータ) (2025-02-27T13:58:44Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Magneto: Combining Small and Large Language Models for Schema Matching [8.387623375871055]
小型言語モデル (SLM) は訓練データと大規模言語モデル (LLM) を必要とする。
我々は、スキーママッチングのための費用効率が高く正確なソリューションであるMagnetoを提案する。
論文 参考訳(メタデータ) (2024-12-11T08:35:56Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction [12.455647753787442]
抽出・デファイン・カノニケーズ(EDC)という3相フレームワークを提案する。
EDCはフレキシブルで、事前に定義されたターゲットスキーマが利用可能で、そうでない場合に適用される。
EDCがパラメータチューニングなしで高品質な三重項を抽出できることを実証する。
論文 参考訳(メタデータ) (2024-04-05T02:53:51Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
大きな言語モデル(LLM)は、言語理解において強力な能力を示しており、この課題を解決するために使用することができる。
既存のメソッドは、当初、スキーマ固有の詳細を使わずにLLMを使用してロジックフォームのドラフトを生成することで、この課題を回避している。
そこで本研究では,LLMが文脈内学習を利用してスキーマを直接理解できる簡易なインコンテキスト理解(ICSU)手法を提案する。
論文 参考訳(メタデータ) (2023-10-22T04:19:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。