Towards Scalable Schema Mapping using Large Language Models
- URL: http://arxiv.org/abs/2505.24716v1
- Date: Fri, 30 May 2025 15:36:56 GMT
- Title: Towards Scalable Schema Mapping using Large Language Models
- Authors: Christopher Buss, Mahdis Safari, Arash Termehchy, Stefan Lee, David Maier,
- Abstract summary: We identify three core issues with using large language models (LLMs) for schema mapping.<n>We propose methods to address through sampling and aggregation techniques.<n>We propose to mitigate through strategies like data type prefiltering.
- Score: 14.028425711746513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing need to integrate information from a large number of diverse sources poses significant scalability challenges for data integration systems. These systems often rely on manually written schema mappings, which are complex, source-specific, and costly to maintain as sources evolve. While recent advances suggest that large language models (LLMs) can assist in automating schema matching by leveraging both structural and natural language cues, key challenges remain. In this paper, we identify three core issues with using LLMs for schema mapping: (1) inconsistent outputs due to sensitivity to input phrasing and structure, which we propose methods to address through sampling and aggregation techniques; (2) the need for more expressive mappings (e.g., GLaV), which strain the limited context windows of LLMs; and (3) the computational cost of repeated LLM calls, which we propose to mitigate through strategies like data type prefiltering.
Related papers
- Towards Efficient Multi-LLM Inference: Characterization and Analysis of LLM Routing and Hierarchical Techniques [14.892995952768352]
Language Models (LMs) have excelled at tasks like text generation, summarization, and question answering.<n>Their inference remains computationally expensive and energy intensive in settings with limited hardware, power, or bandwidth.<n>Recent approaches have introduced multi LLM intelligent model selection strategies that dynamically allocate computational resources based on query complexity.
arXiv Detail & Related papers (2025-06-06T23:13:08Z) - Large Language Models are Good Relational Learners [55.40941576497973]
We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for large language models (LLMs)<n>Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to process and reason over complex entity relationships.
arXiv Detail & Related papers (2025-06-06T04:07:55Z) - Beyond Quacking: Deep Integration of Language Models and RAG into DuckDB [44.057784044659726]
Large language models (LLMs) have made it easier to prototype such retrieval and reasoning data pipelines.<n>This often involves orchestrating data systems, managing data movement, and handling low-level details.<n>We introduce FlockMTL: an extension for abstractions that integrates deeply LLM capabilities and retrieval-augmented generation.
arXiv Detail & Related papers (2025-04-01T19:48:17Z) - Distributed LLMs and Multimodal Large Language Models: A Survey on Advances, Challenges, and Future Directions [1.3638337521666275]
Language models (LMs) are machine learning models designed to predict linguistic patterns by estimating the probability of word sequences based on large-scale datasets, such as text.<n>Although larger datasets typically enhance LM performance, scalability remains a challenge due to constraints in computational power and resources.<n>Recent research has focused on developing decentralized techniques to enable distributed training and inference.
arXiv Detail & Related papers (2025-03-20T15:18:25Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) is a cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding.<n>We introduce a new REC dataset with two key features. First, it is designed with controllable difficulty levels, requiring fine-grained reasoning across object categories, attributes, and relationships.<n>Second, it incorporates negative text and images generated through fine-grained editing, explicitly testing a model's ability to reject non-existent targets.
arXiv Detail & Related papers (2025-02-27T13:58:44Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Magneto: Combining Small and Large Language Models for Schema Matching [8.387623375871055]
Small language models (SLMs) require training data and large language models (LLMs) often incur high computational costs.<n>We present Magneto, a cost-effective and accurate solution for schema matching.
arXiv Detail & Related papers (2024-12-11T08:35:56Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction [12.455647753787442]
We propose a three-phase framework named Extract-Define-Canonicalize (EDC)
EDC is flexible in that it can be applied to settings where a pre-defined target schema is available and when it is not.
We demonstrate EDC is able to extract high-quality triplets without any parameter tuning and with significantly larger schemas compared to prior works.
arXiv Detail & Related papers (2024-04-05T02:53:51Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
This paper introduces Structure Guided Prompt, a framework designed to improve the multi-step reasoning capabilities of Large Language Models (LLMs)
Our experiments show that this framework significantly enhances the reasoning capabilities of LLMs, enabling them to excel in a broader spectrum of natural language scenarios.
arXiv Detail & Related papers (2024-02-20T22:56:23Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
arXiv Detail & Related papers (2023-10-22T04:19:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.