Reinforcing Video Reasoning with Focused Thinking
- URL: http://arxiv.org/abs/2505.24718v2
- Date: Tue, 03 Jun 2025 03:00:29 GMT
- Title: Reinforcing Video Reasoning with Focused Thinking
- Authors: Jisheng Dang, Jingze Wu, Teng Wang, Xuanhui Lin, Nannan Zhu, Hongbo Chen, Wei-Shi Zheng, Meng Wang, Tat-Seng Chua,
- Abstract summary: Novel framework enhances visual reasoning with focused thinking and dense reward granularity.<n>We employ a token weighting mechanism that prioritizes tokens with high informational density.<n>We reformulate RL training by shifting from single-choice to multi-choice QA tasks.
- Score: 65.85683941058916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at \href{https://github.com/longmalongma/TW-GRPO}.
Related papers
- From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs [13.410543801811992]
This paper analyzes existing RAG reasoning models and identifies three main failure patterns.<n>We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system.<n>Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks.
arXiv Detail & Related papers (2025-07-30T14:29:44Z) - Perception-Aware Policy Optimization for Multimodal Reasoning [79.56070395437898]
A major source of error in current multimodal reasoning lies in the perception of visual inputs.<n>We propose PAPO, a novel policy gradient algorithm that encourages the model to learn to perceive while learning to reason.<n>We observe a substantial reduction of 30.5% in perception errors, indicating improved perceptual capabilities with PAPO.
arXiv Detail & Related papers (2025-07-08T23:22:34Z) - GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning.<n>Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate.<n>We propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision.
arXiv Detail & Related papers (2025-06-19T08:49:13Z) - Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute [57.16286134405821]
We propose Fractional Reasoning, a framework that enables continuous control over reasoning intensity at inference time.<n>Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor.<n> Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
arXiv Detail & Related papers (2025-06-18T21:15:59Z) - Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening [36.81125165911328]
Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities.<n>We investigate whether current reinforcement learning algorithms merely sharpen the base model's distribution around problems it can already solve.<n>We show that unlikeliness reward mitigates rank bias and improves pass@$N$ across a large range of $N$ in both synthetic and real theorem proving settings.
arXiv Detail & Related papers (2025-06-03T01:15:15Z) - Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning [3.364797975300393]
We present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs)<n>We construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training.<n>Experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks.
arXiv Detail & Related papers (2025-05-18T14:08:03Z) - DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization [55.06360285372418]
Group Relative Policy Optimization is a reinforcement learning method for large reasoning models (LRMs)<n>In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias.<n>We introduce a new Discriminative Constrained Optimization framework for reinforcing LRMs, grounded in the principle of discriminative learning.
arXiv Detail & Related papers (2025-05-18T11:08:32Z) - Token-Efficient RL for LLM Reasoning [0.02488650627593658]
We propose reinforcement learning strategies tailored for reasoning in large language models (LLMs) under strict memory and compute limits.<n>Building on early policy gradient methods with baseline subtraction, we design critic-free methods that operate on a small, informative subset of output tokens.<n>We show that our methods raise accuracy on the SVAMP benchmark from 46% to over 70% and show strong performance on multi-digit multiplication.
arXiv Detail & Related papers (2025-04-29T14:58:43Z) - Compile Scene Graphs with Reinforcement Learning [69.36723767339001]
Next-token prediction is the fundamental principle for training large language models (LLMs)<n>We introduce R1-SGG, a multimodal LLM (M-LLM) initially trained via supervised fine-tuning (SFT) on the scene graph dataset.<n>We design a set of graph-centric rewards, including three recall-based variants -- Hard Recall, Hard Recall+Relax, and Soft Recall.
arXiv Detail & Related papers (2025-04-18T10:46:22Z) - Self-Training Elicits Concise Reasoning in Large Language Models [23.475414693530965]
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens.<n>We propose simple fine-tuning methods which leverage self-generated concise reasoning paths.<n>Our method achieves a 30% reduction in output tokens, across five model families on GSM8K and MATH, while maintaining average accuracy.
arXiv Detail & Related papers (2025-02-27T14:14:50Z) - Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
Next-token distribution outputs offer a theoretically appealing approach for detection of large language models (LLMs)<n>We propose the Perplexity Attention Weighted Network (PAWN), which uses the last hidden states of the LLM and positions to weight the sum of a series of features based on metrics from the next-token distribution across the sequence length.<n>PAWN shows competitive and even better performance in-distribution than the strongest baselines with a fraction of their trainable parameters.
arXiv Detail & Related papers (2025-01-07T17:00:49Z) - DORB: Dynamically Optimizing Multiple Rewards with Bandits [101.68525259222164]
Policy-based reinforcement learning has proven to be a promising approach for optimizing non-differentiable evaluation metrics for language generation tasks.
We use the Exp3 algorithm for bandits and formulate two approaches for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit)
We empirically show the effectiveness of our approaches via various automatic metrics and human evaluation on two important NLG tasks.
arXiv Detail & Related papers (2020-11-15T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.