From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
- URL: http://arxiv.org/abs/2507.22716v2
- Date: Wed, 06 Aug 2025 14:53:31 GMT
- Title: From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs
- Authors: Jie He, Victor GutiƩrrez-Basulto, Jeff Z. Pan,
- Abstract summary: This paper analyzes existing RAG reasoning models and identifies three main failure patterns.<n>We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system.<n>Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks.
- Score: 13.410543801811992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning-based retrieval-augmented generation (RAG) methods enhance the reasoning abilities of large language models (LLMs). However, most rely only on final-answer rewards, overlooking intermediate reasoning quality. This paper analyzes existing RAG reasoning models and identifies three main failure patterns: (1) information insufficiency, meaning the model fails to retrieve adequate support; (2) faulty reasoning, where logical or content-level flaws appear despite sufficient information; and (3) answer-reasoning inconsistency, where a valid reasoning chain leads to a mismatched final answer. We propose TIRESRAG-R1, a novel framework using a think-retrieve-reflect process and a multi-dimensional reward system to improve reasoning and stability. TIRESRAG-R1 introduces: (1) a sufficiency reward to encourage thorough retrieval; (2) a reasoning quality reward to assess the rationality and accuracy of the reasoning chain; and (3) a reflection reward to detect and revise errors. It also employs a difficulty-aware reweighting strategy and training sample filtering to boost performance on complex tasks. Experiments on four multi-hop QA datasets show that TIRESRAG-R1 outperforms prior RAG methods and generalizes well to single-hop tasks. The code and data are available at: https://github.com/probe2/TIRESRAG-R1.
Related papers
- GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning.<n>Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate.<n>We propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision.
arXiv Detail & Related papers (2025-06-19T08:49:13Z) - Direct Reasoning Optimization: LLMs Can Reward And Refine Their Own Reasoning for Open-Ended Tasks [6.881699020319577]
We propose Direct Reasoning Optimization (DRO), a reinforcement learning framework for fine-tuning Large Language Models (LLMs)<n>DRO is guided by a new reward signal: the Reasoning Reflection Reward (R3)<n>DRO consistently outperforms strong baselines while remaining broadly applicable across both open-ended and structured domains.
arXiv Detail & Related papers (2025-06-16T10:43:38Z) - Reinforcing Video Reasoning with Focused Thinking [65.85683941058916]
We propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity.<n>Specifically, we employ a token weighting mechanism that prioritizes tokens with high informational density.<n>We also reformulate RL training by shifting from single-choice to multi-choice QA tasks.
arXiv Detail & Related papers (2025-05-30T15:42:19Z) - Reinforced Informativeness Optimization for Long-Form Retrieval-Augmented Generation [77.10390725623125]
Long-form question answering (LFQA) presents unique challenges for large language models.<n>RioRAG is a novel reinforcement learning framework that advances long-form RAG through reinforced informativeness optimization.
arXiv Detail & Related papers (2025-05-27T07:34:41Z) - R3-RAG: Learning Step-by-Step Reasoning and Retrieval for LLMs via Reinforcement Learning [62.742230250513025]
Retrieval-Augmented Generation (RAG) integrates external knowledge with Large Language Models (LLMs) to enhance factual correctness and hallucination.<n>We propose $textbfR3-RAG$, which uses $textbfR$einforcement learning to make the LLM learn how to $textbfR$eason and $textbfR$etrieve step by step, thus retrieving comprehensive external knowledge and leading to correct answers.
arXiv Detail & Related papers (2025-05-26T12:25:37Z) - Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning [45.10424242207931]
Retrieval-augmented generation (RAG) enhances the text generation capabilities of large language models (LLMs)<n>We introduce a novel method ReasonRAG that automatically constructs RAG-ProGuide, a high-quality dataset providing process-level rewards for query generation, evidence extraction, and answer generation.<n>With the process-level policy optimization, the proposed framework empowers LLMs to autonomously invoke search, generate queries, extract relevant evidence, and produce final answers.
arXiv Detail & Related papers (2025-05-20T08:21:00Z) - Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability [16.87554947089102]
We propose ARENA, a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards.<n>Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces.
arXiv Detail & Related papers (2025-05-19T15:40:29Z) - RM-R1: Reward Modeling as Reasoning [81.50471199906738]
Reasoning Reward Models (ReasRMs) formulate reward modeling as a reasoning task.<n>We propose a reasoning-oriented training pipeline and train a family of ReasRMs, RM-R1.<n>Our models achieve state-of-the-art performance across three reward model benchmarks on average.
arXiv Detail & Related papers (2025-05-05T06:11:12Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.<n>We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.<n>Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - Reward Models Identify Consistency, Not Causality [54.987590763737145]
State-of-the-art reward models prioritize structural consistency over causal correctness.<n>Removing the problem statement has minimal impact on reward scores.<n> altering numerical values or disrupting the reasoning flow significantly affects RM outputs.
arXiv Detail & Related papers (2025-02-20T14:57:14Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
We propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR)<n>ReARTeR enhances RAG systems' reasoning capabilities through post-training and test-time scaling.<n> Experimental results on multi-step reasoning benchmarks demonstrate significant improvements.
arXiv Detail & Related papers (2025-01-14T05:56:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.