Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
- URL: http://arxiv.org/abs/2505.24876v1
- Date: Fri, 30 May 2025 17:59:53 GMT
- Title: Agent-X: Evaluating Deep Multimodal Reasoning in Vision-Centric Agentic Tasks
- Authors: Tajamul Ashraf, Amal Saqib, Hanan Ghani, Muhra AlMahri, Yuhao Li, Noor Ahsan, Umair Nawaz, Jean Lahoud, Hisham Cholakkal, Mubarak Shah, Philip Torr, Fahad Shahbaz Khan, Rao Muhammad Anwer, Salman Khan,
- Abstract summary: We introduce Agent-X, a benchmark for evaluating vision-centric agents in real-world, multimodal settings.<n>Agent-X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text.<n>Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks.
- Score: 94.19506319646376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reasoning is fundamental for solving complex tasks, especially in vision-centric scenarios that demand sequential, multimodal understanding. However, existing benchmarks typically evaluate agents with fully synthetic, single-turn queries, limited visual modalities, and lack a framework to assess reasoning quality over multiple steps as required in real-world settings. To address this, we introduce Agent-X, a large-scale benchmark for evaluating vision-centric agents multi-step and deep reasoning capabilities in real-world, multimodal settings. Agent- X features 828 agentic tasks with authentic visual contexts, including images, multi-image comparisons, videos, and instructional text. These tasks span six major agentic environments: general visual reasoning, web browsing, security and surveillance, autonomous driving, sports, and math reasoning. Our benchmark requires agents to integrate tool use with explicit, stepwise decision-making in these diverse settings. In addition, we propose a fine-grained, step-level evaluation framework that assesses the correctness and logical coherence of each reasoning step and the effectiveness of tool usage throughout the task. Our results reveal that even the best-performing models, including GPT, Gemini, and Qwen families, struggle to solve multi-step vision tasks, achieving less than 50% full-chain success. These findings highlight key bottlenecks in current LMM reasoning and tool-use capabilities and identify future research directions in vision-centric agentic reasoning models. Our data and code are publicly available at https://github.com/mbzuai-oryx/Agent-X
Related papers
- Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling [83.78874399606379]
We propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling.<n>It comprises four distinct small-scale agents, with clearly defined roles and effective collaboration.<n>It shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks.
arXiv Detail & Related papers (2025-08-05T12:52:09Z) - What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities [56.646832992178105]
We introduce OmniBench, a cross-platform, graph-based benchmark with an automated pipeline for synthesizing tasks of controllable complexity.<n>We present OmniEval, a multidimensional evaluation framework that includes subtask-level evaluation, graph-based metrics, and comprehensive tests across 10 capabilities.<n>Our dataset contains 36k graph-structured tasks across 20 scenarios, achieving a 91% human acceptance rate.
arXiv Detail & Related papers (2025-06-10T15:59:38Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents.<n>Existing benchmarks mostly assess their reasoning abilities in language part.<n>MageBench is a reasoning capability oriented multimodal agent benchmark.
arXiv Detail & Related papers (2024-12-05T17:08:19Z) - MMCTAgent: Multi-modal Critical Thinking Agent Framework for Complex Visual Reasoning [3.651416979200174]
MMCTAgent is a novel critical thinking agent framework designed to address the inherent limitations of current MLLMs in complex visual reasoning tasks.
Inspired by human cognitive processes and critical thinking, MMCTAgent iteratively analyzes multi-modal information, decomposes queries, plans strategies, and dynamically evolves its reasoning.
arXiv Detail & Related papers (2024-05-28T16:55:41Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection with Multimodal Large Language Models [61.8876114116716]
Multimodal large language models (MLLMs) have demonstrated strong capabilities in vision-related tasks.<n>However, their ability to detect subtle visual spoofing and forgery clues in face attack detection tasks remains underexplored.<n>We introduce a benchmark, SHIELD, to evaluate MLLMs for face spoofing and forgery detection.
arXiv Detail & Related papers (2024-02-06T17:31:36Z) - VisualWebArena: Evaluating Multimodal Agents on Realistic Visual Web Tasks [93.85005277463802]
VisualWebArena is a benchmark designed to assess the performance of multimodal web agents on realistic tasks.
To perform on this benchmark, agents need to accurately process image-text inputs, interpret natural language instructions, and execute actions on websites to accomplish user-defined objectives.
arXiv Detail & Related papers (2024-01-24T18:35:21Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
Large Language Models (LLMs) have significantly advanced natural language processing.<n>As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.<n>This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Multi-Agent Embodied Visual Semantic Navigation with Scene Prior
Knowledge [42.37872230561632]
In visual semantic navigation, the robot navigates to a target object with egocentric visual observations and the class label of the target is given.
Most of the existing models are only effective for single-agent navigation, and a single agent has low efficiency and poor fault tolerance when completing more complicated tasks.
We propose the multi-agent visual semantic navigation, in which multiple agents collaborate with others to find multiple target objects.
arXiv Detail & Related papers (2021-09-20T13:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.