Probabilistic intraday electricity price forecasting using generative machine learning
- URL: http://arxiv.org/abs/2506.00044v1
- Date: Wed, 28 May 2025 11:41:46 GMT
- Title: Probabilistic intraday electricity price forecasting using generative machine learning
- Authors: Jieyu Chen, Sebastian Lerch, Melanie Schienle, Tomasz Serafin, RafaĆ Weron,
- Abstract summary: We propose a novel generative neural network model to generate probabilistic path forecasts for electricity prices.<n>Our method demonstrates competitive performance in terms of statistical evaluation metrics.<n>Our findings highlight the potential of generative machine learning tools in electricity price forecasting.
- Score: 0.06990493129893112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing importance of intraday electricity trading in Europe calls for improved price forecasting and tailored decision-support tools. In this paper, we propose a novel generative neural network model to generate probabilistic path forecasts for intraday electricity prices and use them to construct effective trading strategies for Germany's continuous-time intraday market. Our method demonstrates competitive performance in terms of statistical evaluation metrics compared to two state-of-the-art statistical benchmark approaches. To further assess its economic value, we consider a realistic fixed-volume trading scenario and propose various strategies for placing market sell orders based on the path forecasts. Among the different trading strategies, the price paths generated by our generative model lead to higher profit gains than the benchmark methods. Our findings highlight the potential of generative machine learning tools in electricity price forecasting and underscore the importance of economic evaluation.
Related papers
- Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.<n>This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.<n>We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market [3.130428666578115]
This study presents a Transformer-based deep learning model to forecast the price spread between real-time and day-ahead electricity prices in the ERCOT (Electric Reliability Council of Texas) market.<n>The proposed model is trained under realistic constraints and validated using a walk-forward approach by updating the model every week.<n>The results show that the strategy of trading only at the peak hour with a precision score of over 50% produces nearly consistent profit over the test period.
arXiv Detail & Related papers (2024-11-25T20:04:16Z) - Cross-border Commodity Pricing Strategy Optimization via Mixed Neural Network for Time Series Analysis [46.26988706979189]
Cross-border commodity pricing determines competitiveness and market share of businesses.
Time series data is of great significance in commodity pricing and can reveal market dynamics and trends.
We propose a new method based on the hybrid neural network model CNN-BiGRU-SSA.
arXiv Detail & Related papers (2024-08-22T03:59:52Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Simulation-based Forecasting for Intraday Power Markets: Modelling
Fundamental Drivers for Location, Shape and Scale of the Price Distribution [0.0]
We propose a modelling strategy for the location, shape and scale parameters of the return distribution in intraday markets.
We consider wind and solar forecasts and their intraday updates, outages, price information and a novel measure for the shape of the merit-order.
We find that the volatility is driven by the merit-order regime, the time to delivery and the closure of cross-border order books.
arXiv Detail & Related papers (2022-11-23T15:08:50Z) - Probabilistic forecasting of German electricity imbalance prices [0.0]
The exponential growth of renewable energy capacity has brought much uncertainty to electricity prices and to electricity generation.
For an energy trader participating in both markets, the forecasting of imbalance prices is of particular interest.
The forecasting is performed 30 minutes before the delivery, so that the trader might still choose the trading place.
arXiv Detail & Related papers (2022-05-23T16:32:20Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
Several methods were recently proposed to mine the shared information through stock concepts extracted from the Web to improve the forecasting results.
Previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts.
We propose a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts.
arXiv Detail & Related papers (2021-10-26T14:04:04Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
Recent studies have shown that the hourly German Intraday Continuous Market is weak-form efficient.
A probabilistic forecasting of the hourly intraday electricity prices is performed by simulating trajectories in every trading window.
The study aims to forecast the price distribution in the German Intraday Continuous Market in the last 3 hours of trading, but the approach allows for application to other continuous markets, especially in Europe.
arXiv Detail & Related papers (2020-05-04T10:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.