論文の概要: Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers
- arxiv url: http://arxiv.org/abs/2506.00054v1
- Date: Wed, 28 May 2025 22:57:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.094267
- Title: Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers
- Title(参考訳): Retrieval-Augmented Generation: アーキテクチャ、拡張、ロバスト性フロンティアに関する総合的な調査
- Authors: Chaitanya Sharma,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、大規模言語モデルを強化するための強力なパラダイムとして登場した。
RAGは、検索品質、基底忠実度、パイプライン効率、ノイズや逆入力に対する堅牢性といった新しい課題を導入している。
本調査は、RAG研究における現在の知識を集約し、次世代の検索強化言語モデリングシステムの基礎となることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm to enhance large language models (LLMs) by conditioning generation on external evidence retrieved at inference time. While RAG addresses critical limitations of parametric knowledge storage-such as factual inconsistency and domain inflexibility-it introduces new challenges in retrieval quality, grounding fidelity, pipeline efficiency, and robustness against noisy or adversarial inputs. This survey provides a comprehensive synthesis of recent advances in RAG systems, offering a taxonomy that categorizes architectures into retriever-centric, generator-centric, hybrid, and robustness-oriented designs. We systematically analyze enhancements across retrieval optimization, context filtering, decoding control, and efficiency improvements, supported by comparative performance analyses on short-form and multi-hop question answering tasks. Furthermore, we review state-of-the-art evaluation frameworks and benchmarks, highlighting trends in retrieval-aware evaluation, robustness testing, and federated retrieval settings. Our analysis reveals recurring trade-offs between retrieval precision and generation flexibility, efficiency and faithfulness, and modularity and coordination. We conclude by identifying open challenges and future research directions, including adaptive retrieval architectures, real-time retrieval integration, structured reasoning over multi-hop evidence, and privacy-preserving retrieval mechanisms. This survey aims to consolidate current knowledge in RAG research and serve as a foundation for the next generation of retrieval-augmented language modeling systems.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は大規模言語モデル(LLM)を推論時に取得した外部証拠に条件付けすることで拡張する強力なパラダイムとして登場した。
RAGは、現実的不整合やドメインの非フレキシビリティといったパラメトリックな知識記憶の重要な制限に対処する一方で、検索品質、基礎的忠実性、パイプライン効率、ノイズや敵対的な入力に対する堅牢性といった新たな課題を導入している。
この調査は、RAGシステムにおける最近の進歩を包括的に合成し、アーキテクチャをレトリバー中心、ジェネレータ中心、ハイブリッド、ロバストネス指向の設計に分類する分類法を提供する。
我々は,検索最適化,コンテキストフィルタリング,復号制御,効率向上などの拡張を体系的に分析し,ショートフォームおよびマルチホップ質問応答タスクにおける比較性能解析によって支援する。
さらに,最新の評価フレームワークとベンチマークをレビューし,検索意識評価,ロバストネステスト,フェデレーション付き検索設定の傾向を明らかにする。
分析の結果,検索精度と生成柔軟性,効率性,忠実度,モジュール性とコーディネーションの相違が繰り返し明らかになった。
我々は,適応型検索アーキテクチャ,リアルタイム検索統合,マルチホップエビデンスに対する構造化推論,プライバシ保護型検索機構など,オープンな課題と今後の研究方向性を特定することで結論付けた。
本調査は、RAG研究における現在の知識を集約し、次世代の検索強化言語モデリングシステムの基礎となることを目的としている。
関連論文リスト
- A Survey on Knowledge-Oriented Retrieval-Augmented Generation [45.65542434522205]
近年,RAG (Retrieval-Augmented Generation) が注目されている。
RAGは大規模検索システムと生成モデルを組み合わせる。
動的外部知識を用いた生成モデルの強化など,RAGの重要な特徴について論じる。
論文 参考訳(メタデータ) (2025-03-11T01:59:35Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - A Survey on Retrieval-Augmented Text Generation for Large Language Models [1.4579344926652844]
Retrieval-Augmented Generation (RAG)は、検索手法とディープラーニングの進歩を融合する。
本稿では,RAGパラダイムを検索前,検索後,検索後,生成の4つのカテゴリに分類する。
RAGの進化を概説し、重要な研究の分析を通して分野の進歩について論じている。
論文 参考訳(メタデータ) (2024-04-17T01:27:42Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
大きな言語モデル(LLM)には印象的な能力があるが、幻覚のような課題に直面している。
Retrieval-Augmented Generation (RAG) は,外部データベースからの知識を取り入れた,有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-18T07:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。