Control-R: Towards controllable test-time scaling
- URL: http://arxiv.org/abs/2506.00189v1
- Date: Fri, 30 May 2025 19:59:44 GMT
- Title: Control-R: Towards controllable test-time scaling
- Authors: Di Zhang, Weida Wang, Junxian Li, Xunzhi Wang, Jiatong Li, Jianbo Wu, Jingdi Lei, Haonan He, Peng Ye, Shufei Zhang, Wanli Ouyang, Yuqiang Li, Dongzhan Zhou,
- Abstract summary: Reasoning Control Fields (RCF) injects structured control signals to guide reasoning from a tree search perspective.<n>RCF enables models to adjust reasoning effort according to given control conditions when solving complex tasks.<n> Conditional Distillation Finetuning (CDF) method trains model--particularly Control-R-32B--to effectively adjust reasoning effort during test time.
- Score: 44.02977521360594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper target in addressing the challenges of underthinking and overthinking in long chain-of-thought (CoT) reasoning for Large Reasoning Models (LRMs) by introducing Reasoning Control Fields (RCF)--a novel test-time approach that injects structured control signals to guide reasoning from a tree search perspective. RCF enables models to adjust reasoning effort according to given control conditions when solving complex tasks. Additionally, we present the Control-R-4K dataset, which consists of challenging problems annotated with detailed reasoning processes and corresponding control fields. To further enhance reasoning control, we propose a Conditional Distillation Finetuning (CDF) method, which trains model--particularly Control-R-32B--to effectively adjust reasoning effort during test time. Experimental results on benchmarks such as AIME2024 and MATH500 demonstrate that our approach achieves state-of-the-art performance at the 32B scale while enabling a controllable Long CoT reasoning process (L-CoT). Overall, this work introduces an effective paradigm for controllable test-time scaling reasoning.
Related papers
- From "Aha Moments" to Controllable Thinking: Toward Meta-Cognitive Reasoning in Large Reasoning Models via Decoupled Reasoning and Control [11.321315058502215]
Large Reasoning Models (LRMs) have demonstrated a latent capacity for complex reasoning by spontaneously exhibiting cognitive behaviors such as step-by-step reasoning, reflection, and backtracking, commonly referred to as "Aha Moments"<n>However, such emergent behaviors remain unregulated and uncontrolled, often resulting in overthinking, where the model continues generating redundant reasoning content even after reaching reliable conclusions.<n>Current models are unable to monitor and adaptively manage their reasoning process to determine when to continue, backtrack, or terminate.<n>We propose the Meta-cognitive Reasoning Framework (MERA), which explicitly decouples the thinking process into distinct
arXiv Detail & Related papers (2025-08-06T13:59:17Z) - KAT-V1: Kwai-AutoThink Technical Report [50.84483585850113]
We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks.<n>KAT dynamically switches between reasoning and non-reasoning modes based on task complexity.<n>We also propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework.
arXiv Detail & Related papers (2025-07-11T04:07:10Z) - STU-PID: Steering Token Usage via PID Controller for Efficient Large Language Model Reasoning [0.0]
Large Language Models employing extended chain-of-thought (CoT) reasoning often suffer from the overthinking phenomenon.<n>We propose STUPID, a novel training-free method that employs a PID controller to dynamically activation modulate steering strength during inference.<n>Our approach combines a chunk-level classifier for detecting redundant reasoning patterns with a PID control mechanism that adaptively adjusts steering intensity based on the predicted redundancy probability.
arXiv Detail & Related papers (2025-06-23T16:47:19Z) - Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute [57.16286134405821]
We propose Fractional Reasoning, a framework that enables continuous control over reasoning intensity at inference time.<n>Our method operates by extracting the latent steering vector associated with deeper reasoning and reapplying it with a tunable scaling factor.<n> Experiments on GSM8K, MATH500, and GPQA demonstrate that Fractional Reasoning consistently improves performance across diverse reasoning tasks and models.
arXiv Detail & Related papers (2025-06-18T21:15:59Z) - AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting [23.004467211806467]
AdaCtrl is a novel framework to support difficulty-aware adaptive reasoning budget allocation.<n>It dynamically adjusts its reasoning length based on self-assessed problem difficulty.<n>AdaCtrl enables precise user control over the reasoning budget, allowing for tailored responses to meet specific needs.
arXiv Detail & Related papers (2025-05-24T18:46:50Z) - TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling [20.980976778470247]
Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks.<n>We propose TrimR, a verifier-based, training-free, efficient framework for dynamic Chain-of-Thought (CoT) compression.
arXiv Detail & Related papers (2025-05-22T12:23:30Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
Large reasoning models (LRMs) have significantly enhanced their reasoning capabilities by generating longer chains of thought.<n>This performance gain comes at the cost of a substantial increase in redundant reasoning during the generation process.<n>We propose a novel framework, Self-Braking Tuning (SBT), which tackles overthinking from the perspective of allowing the model to regulate its own reasoning process.
arXiv Detail & Related papers (2025-05-20T16:53:40Z) - Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.<n>Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - Controllability-Constrained Deep Network Models for Enhanced Control of
Dynamical Systems [4.948174943314265]
Control of a dynamical system without the knowledge of dynamics is an important and challenging task.
Modern machine learning approaches, such as deep neural networks (DNNs), allow for the estimation of a dynamics model from control inputs and corresponding state observation outputs.
We propose a control-theoretical method that explicitly enhances models estimated from data with controllability.
arXiv Detail & Related papers (2023-11-11T00:04:26Z) - Steady-State Error Compensation in Reference Tracking and Disturbance
Rejection Problems for Reinforcement Learning-Based Control [0.9023847175654602]
Reinforcement learning (RL) is a promising, upcoming topic in automatic control applications.
Initiative action state augmentation (IASA) for actor-critic-based RL controllers is introduced.
This augmentation does not require any expert knowledge, leaving the approach model free.
arXiv Detail & Related papers (2022-01-31T16:29:19Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
We introduce the CoCoMoT (Computing Conformance Modulo Theories) framework.
First, we show how SAT-based encodings studied in the pure control-flow setting can be lifted to our data-aware case.
Second, we introduce a novel preprocessing technique based on a notion of property-preserving clustering.
arXiv Detail & Related papers (2021-03-18T20:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.