Riemannian Principal Component Analysis
- URL: http://arxiv.org/abs/2506.00226v1
- Date: Fri, 30 May 2025 21:04:01 GMT
- Title: Riemannian Principal Component Analysis
- Authors: Oldemar RodrÃguez,
- Abstract summary: This paper proposes an innovative extension of Principal Component Analysis (PCA) that transcends the traditional assumption of data lying in Euclidean space.<n>We adapt PCA to include local metrics, enabling the incorporation of manifold geometry.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper proposes an innovative extension of Principal Component Analysis (PCA) that transcends the traditional assumption of data lying in Euclidean space, enabling its application to data on Riemannian manifolds. The primary challenge addressed is the lack of vector space operations on such manifolds. Fletcher et al., in their work {\em Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape}, proposed Principal Geodesic Analysis (PGA) as a geometric approach to analyze data on Riemannian manifolds, particularly effective for structured datasets like medical images, where the manifold's intrinsic structure is apparent. However, PGA's applicability is limited when dealing with general datasets that lack an implicit local distance notion. In this work, we introduce a generalized framework, termed {\em Riemannian Principal Component Analysis (R-PCA)}, to extend PGA for any data endowed with a local distance structure. Specifically, we adapt the PCA methodology to Riemannian manifolds by equipping data tables with local metrics, enabling the incorporation of manifold geometry. This framework provides a unified approach for dimensionality reduction and statistical analysis directly on manifolds, opening new possibilities for datasets with region-specific or part-specific distance notions, ensuring respect for their intrinsic geometric properties.
Related papers
- Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation [79.27003481818413]
We introduce FlatVI, a training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry.<n>By encouraging straight lines in the latent space to approximate geodesics on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches.
arXiv Detail & Related papers (2025-07-15T23:08:14Z) - On the Wasserstein Geodesic Principal Component Analysis of probability measures [1.2999518604217852]
The goal is to identify geodesic curves in the space of probability measures that best capture the modes of variation of the underlying dataset.<n>We first address the case of a collection of Gaussian distributions, and show how to lift the computations in the space of invertible linear maps.<n>For the more general setting of absolutely continuous probability measures, we leverage a novel approach to parameterizing geodesics in Wasserstein space with neural networks.
arXiv Detail & Related papers (2025-06-04T22:00:43Z) - Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices [6.7523635840772505]
Circular and non-flat data distributions are prevalent across diverse domains of data science.<n>A principled approach to accounting for the underlying geometry of such data is pivotal.<n>This work lays the groundwork for extending classical machine learning and statistical methods to more complex and structured data.
arXiv Detail & Related papers (2025-02-03T16:46:46Z) - Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows [10.649159213723106]
We propose a framework for data-driven Riemannian geometry that is scalable in both geometry and learning.<n>We show that the proposed framework produces high-quality geodesics passing through the data support.<n>This is the first scalable framework for extracting the complete geometry of the data manifold.
arXiv Detail & Related papers (2024-10-02T18:52:12Z) - Pulling back symmetric Riemannian geometry for data analysis [0.0]
Ideal data analysis tools for data sets should account for non-linear geometry.
A rich mathematical structure to account for non-linear geometries has been shown to be able to capture the data geometry.
Many standard data analysis tools initially developed for data in Euclidean space can be generalised efficiently to data on a symmetric Riemannian manifold.
arXiv Detail & Related papers (2024-03-11T10:59:55Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
The Fisher-Rao information geometry allows for leveraging tools from differential geometry.
We will present some practical uses of these geometric tools in the framework of elliptical distributions.
arXiv Detail & Related papers (2023-10-02T09:23:32Z) - Parametrizing Product Shape Manifolds by Composite Networks [5.772786223242281]
We show that it is possible to learn an efficient neural network approximation for shape spaces with a special product structure.
Our proposed architecture leverages this structure by separately learning approximations for the low-dimensional factors and a subsequent combination.
arXiv Detail & Related papers (2023-02-28T15:31:23Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
We consider the problem of data classification where the training set consists of just a few data points.
We reveal key relationships between the geometry of an AI model's feature space, the structure of the underlying data distributions, and the model's generalisation capabilities.
arXiv Detail & Related papers (2022-11-07T14:52:58Z) - A singular Riemannian geometry approach to Deep Neural Networks I.
Theoretical foundations [77.86290991564829]
Deep Neural Networks are widely used for solving complex problems in several scientific areas, such as speech recognition, machine translation, image analysis.
We study a particular sequence of maps between manifold, with the last manifold of the sequence equipped with a Riemannian metric.
We investigate the theoretical properties of the maps of such sequence, eventually we focus on the case of maps between implementing neural networks of practical interest.
arXiv Detail & Related papers (2021-12-17T11:43:30Z) - A Unifying and Canonical Description of Measure-Preserving Diffusions [60.59592461429012]
A complete recipe of measure-preserving diffusions in Euclidean space was recently derived unifying several MCMC algorithms into a single framework.
We develop a geometric theory that improves and generalises this construction to any manifold.
arXiv Detail & Related papers (2021-05-06T17:36:55Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.