Evaluation of LLMs for mathematical problem solving
- URL: http://arxiv.org/abs/2506.00309v3
- Date: Sat, 28 Jun 2025 05:54:45 GMT
- Title: Evaluation of LLMs for mathematical problem solving
- Authors: Ruonan Wang, Runxi Wang, Yunwen Shen, Chengfeng Wu, Qinglin Zhou, Rohitash Chandra,
- Abstract summary: Large Language Models (LLMs) have shown impressive performance on a range of educational tasks, but are still understudied for their potential to solve mathematical problems.<n>We compare three prominent LLMs, including GPT-4o, DeepSeek-V3, and Gemini-2.0, on three mathematics datasets of varying complexities.<n>GPT-4o is the most stable and consistent in performance across all the datasets, but particularly it performs outstandingly in high-level questions of the MIT Open Courseware dataset.
- Score: 1.6811789875704863
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have shown impressive performance on a range of educational tasks, but are still understudied for their potential to solve mathematical problems. In this study, we compare three prominent LLMs, including GPT-4o, DeepSeek-V3, and Gemini-2.0, on three mathematics datasets of varying complexities (GSM8K, MATH500, and MIT Open Courseware datasets). We take a five-dimensional approach based on the Structured Chain-of-Thought (SCoT) framework to assess final answer correctness, step completeness, step validity, intermediate calculation accuracy, and problem comprehension. The results show that GPT-4o is the most stable and consistent in performance across all the datasets, but particularly it performs outstandingly in high-level questions of the MIT Open Courseware dataset. DeepSeek-V3 is competitively strong in well-structured domains such as optimisation, but suffers from fluctuations in accuracy in statistical inference tasks. Gemini-2.0 shows strong linguistic understanding and clarity in well-structured problems but performs poorly in multi-step reasoning and symbolic logic. Our error analysis reveals particular deficits in each model: GPT-4o is at times lacking in sufficient explanation or precision; DeepSeek-V3 leaves out intermediate steps; and Gemini-2.0 is less flexible in mathematical reasoning in higher dimensions.
Related papers
- Climbing the Ladder of Reasoning: What LLMs Can-and Still Can't-Solve after SFT? [59.418994222096885]
We conduct a detailed analysis of model performance on the AIME24 dataset.<n>We categorize questions into four tiers (Easy, Medium, Hard, and Extremely Hard)<n>We find that progression from Easy to Medium tier requires adopting an R1 reasoning style with minimal SFT-1K instances.<n>Exh-level questions present a fundamentally different challenge; they require unconventional problem-solving skills.
arXiv Detail & Related papers (2025-04-16T03:39:38Z) - Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models [86.45058529521258]
OlymMATH is a novel Olympiad-level mathematical benchmark designed to rigorously test the complex reasoning capabilities of LLMs.<n>OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions.
arXiv Detail & Related papers (2025-03-27T11:20:17Z) - Performance Comparison of Large Language Models on Advanced Calculus Problems [0.0]
The study aims to evaluate models' accuracy, reliability, and problem-solving capabilities, including ChatGPT 4o, Gemini Advanced with 1.5 Pro, Copilot Pro, Claude 3.5 Sonnet, Meta AI, Mistral AI, and Perplexity.<n>The results highlight significant trends and patterns in the models' performance, revealing both their strengths and weaknesses.
arXiv Detail & Related papers (2025-03-05T23:26:12Z) - Large Language Models and Mathematical Reasoning Failures [1.6114012813668932]
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems.<n>We rigorously analyze both final answers and solution steps to identify reasoning failures.<n>We find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic.
arXiv Detail & Related papers (2025-02-17T09:07:32Z) - UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models [11.964085209696051]
UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types.<n>Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench.<n>Our evaluation of 23 leading LLMs reveals that the highest EAcc robustness achieved is 56.3% by OpenAI-o1-mini, with large $Delta$ values observed across different models.
arXiv Detail & Related papers (2025-01-23T15:46:43Z) - Advancing Mathematical Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages [13.377908992869814]
Problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora.<n>We identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance.
arXiv Detail & Related papers (2025-01-23T12:14:57Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
We introduce ErrorRadar, the first benchmark designed to assess MLLMs' capabilities in error detection.
ErrorRadar evaluates two sub-tasks: error step identification and error categorization.
It consists of 2,500 high-quality multimodal K-12 mathematical problems, collected from real-world student interactions.
Results indicate significant challenges still remain, as GPT-4o with best performance is still around 10% behind human evaluation.
arXiv Detail & Related papers (2024-10-06T14:59:09Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - Benchmarking GPT-4 on Algorithmic Problems: A Systematic Evaluation of Prompting Strategies [47.129504708849446]
Large Language Models (LLMs) have revolutionized the field of Natural Language Processing.
LLMs lack systematic generalization, which allows to extrapolate the learned statistical regularities outside the training distribution.
In this work, we offer a systematic benchmarking of GPT-4, one of the most advanced LLMs available.
arXiv Detail & Related papers (2024-02-27T10:44:52Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
We focus on two popular reasoning tasks: arithmetic reasoning and code generation.
We introduce (i) a general ontology of perturbations for math and coding questions, (ii) a semi-automatic method to apply these perturbations, and (iii) two datasets.
We show a significant performance drop across all the models against perturbed questions.
arXiv Detail & Related papers (2024-01-17T18:13:07Z) - MathVista: Evaluating Mathematical Reasoning of Foundation Models in
Visual Contexts [170.01089233942594]
MathVista is a benchmark designed to combine challenges from diverse mathematical and visual tasks.
The best-performing GPT-4V model achieves an overall accuracy of 49.9%, substantially outperforming Bard, the second-best performer, by 15.1%.
GPT-4V still falls short of human performance by 10.4%, as it often struggles to understand complex figures and perform rigorous reasoning.
arXiv Detail & Related papers (2023-10-03T17:57:24Z) - Benchmarking the Abilities of Large Language Models for RDF Knowledge
Graph Creation and Comprehension: How Well Do LLMs Speak Turtle? [0.0]
Large Language Models (LLMs) are advancing at a rapid pace, with significant improvements at natural language processing and coding tasks.
To evaluate the proficiency of various LLMs, we created a set of five tasks that probe their ability to parse, understand, analyze, and create knowledge graphs serialized in Turtle syntax.
The evaluation encompassed four commercially available LLMs - GPT-3.5, GPT-4, Claude 1.3, and Claude 2.0, as well as two freely accessible offline models, GPT4All Vicuna and GPT4All Falcon 13B.
arXiv Detail & Related papers (2023-09-29T10:36:04Z) - Evaluating Large Language Models on Graphs: Performance Insights and
Comparative Analysis [7.099257763803159]
We evaluate the capabilities of four Large Language Models (LLMs) in addressing several analytical problems with graph data.
We employ four distinct evaluation metrics: Correctness, Fidelity, and Rectification.
GPT models can generate logical and coherent results, outperforming alternatives in correctness.
arXiv Detail & Related papers (2023-08-22T06:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.