論文の概要: Channel-Imposed Fusion: A Simple yet Effective Method for Medical Time Series Classification
- arxiv url: http://arxiv.org/abs/2506.00337v1
- Date: Sat, 31 May 2025 01:44:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.787872
- Title: Channel-Imposed Fusion: A Simple yet Effective Method for Medical Time Series Classification
- Title(参考訳): Channel-Imposed Fusion:医療時系列分類のためのシンプルで効果的な方法
- Authors: Ming Hu, Jianfu Yin, Mingyu Dou, Yuqi Wang, Ruochen Dang, Siyi Liang, Cong Hu, Yao Wang, Bingliang Hu, Quan Wang,
- Abstract要約: 本研究は、構造的透明性を重視したモデリングパラダイムに焦点を移し、医療データの本質的な特徴とより密接に一致させる。
本稿では,チャネル間情報融合による信号と雑音の比を高める新しい手法であるChannel Imposed Fusion (CIF)を提案する。
複数のパブリックなEEGおよびECGデータセットの実験結果は、提案手法が既存の最先端(SOTA)アプローチを様々な分類基準で上回るだけでなく、分類プロセスの透明性を著しく向上させ、医療時系列分類の新しい視点を提供することを示した。
- 参考スコア(独自算出の注目度): 11.520819583343128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automatic classification of medical time series signals, such as electroencephalogram (EEG) and electrocardiogram (ECG), plays a pivotal role in clinical decision support and early detection of diseases. Although Transformer based models have achieved notable performance by implicitly modeling temporal dependencies through self-attention mechanisms, their inherently complex architectures and opaque reasoning processes undermine their trustworthiness in high stakes clinical settings. In response to these limitations, this study shifts focus toward a modeling paradigm that emphasizes structural transparency, aligning more closely with the intrinsic characteristics of medical data. We propose a novel method, Channel Imposed Fusion (CIF), which enhances the signal-to-noise ratio through cross-channel information fusion, effectively reduces redundancy, and improves classification performance. Furthermore, we integrate CIF with the Temporal Convolutional Network (TCN), known for its structural simplicity and controllable receptive field, to construct an efficient and explicit classification framework. Experimental results on multiple publicly available EEG and ECG datasets demonstrate that the proposed method not only outperforms existing state-of-the-art (SOTA) approaches in terms of various classification metrics, but also significantly enhances the transparency of the classification process, offering a novel perspective for medical time series classification.
- Abstract(参考訳): 脳波(EEG)や心電図(ECG)などの医療時系列信号の自動分類は、臨床診断支援や疾患の早期発見において重要な役割を担っている。
トランスフォーマーをベースとしたモデルは、自己認識機構を通じて時間的依存を暗黙的にモデル化することで、顕著なパフォーマンスを達成しているが、それらの本質的に複雑なアーキテクチャと不透明な推論プロセスは、高利害な臨床環境での信頼性を損なう。
これらの制約に応えて、本研究では、構造的透明性を重視したモデリングパラダイムに焦点を移し、医療データの本質的な特性とより密に一致させる。
本稿では,チャネル間情報融合による信号対雑音比を向上し,冗長性を効果的に低減し,分類性能を向上させる新しい手法であるChannel Imposed Fusion (CIF)を提案する。
さらに,CIFと時間畳み込みネットワーク(TCN, Temporal Convolutional Network)を統合し,その構造的単純さと制御可能な受容場を構築し,効率的で明示的な分類枠組みを構築する。
複数のパブリックなEEGおよびECGデータセットの実験結果から、提案手法は様々な分類基準で既存の最先端(SOTA)アプローチを上回るだけでなく、分類プロセスの透明性を著しく向上させ、医療時系列分類の新しい視点を提供することを示した。
関連論文リスト
- Structure-Accurate Medical Image Translation via Dynamic Frequency Balance and Knowledge Guidance [60.33892654669606]
拡散モデルは,必要な医用画像を合成するための強力な戦略である。
既存のアプローチはまだ、高周波情報の過度な適合による解剖学的構造歪みの問題に悩まされている。
本稿では,動的周波数バランスと知識指導に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2025-04-13T05:48:13Z) - AI-Powered Automated Model Construction for Patient-Specific CFD Simulations of Aortic Flows [8.062885940500259]
本研究では,医用画像からシミュレーション可能な血管モデルを作成するためのディープラーニングフレームワークを提案する。
提案手法は,手作業や処理時間を著しく削減しつつ,セグメンテーションとメッシュ品質の最先端性能を示す。
論文 参考訳(メタデータ) (2025-03-16T14:18:25Z) - Revisiting Medical Image Retrieval via Knowledge Consolidation [46.6989555659494]
本稿では,階層的特徴と機能に関する知識を集約する新しい手法を提案する。
本稿では,Depth-aware Representation Fusion (DaRF)とStructure-aware Contrastive Hashing (SCH)を紹介する。
解剖学的放射線学データセットの平均精度は5.6~38.9%向上した。
論文 参考訳(メタデータ) (2025-03-12T13:16:42Z) - CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
マルチモーダルEHRデータから有意な時間的パターンを効率的に抽出するために,CTPD(Cross-Modal Temporal Pattern Discovery)フレームワークを導入する。
提案手法では,時間的セマンティックな埋め込みを生成するためにスロットアテンションを用いて改良された時間的パターン表現を提案する。
論文 参考訳(メタデータ) (2024-11-01T15:54:07Z) - Boosting Masked ECG-Text Auto-Encoders as Discriminative Learners [10.088785685439134]
本稿では,コントラッシブマスクを用いた自動エンコーダアーキテクチャを用いて,ECGとテキストデータを事前学習するフレームワークD-BETAを提案する。
D-BETAは、生成性の強さと差別能力の強化を一意に組み合わせて、堅牢なクロスモーダル表現を実現する。
論文 参考訳(メタデータ) (2024-10-03T01:24:09Z) - FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling [19.85701025524892]
FoME (Foundation Model for EEG) は適応的側方アテンションスケーリングを用いた新しいアプローチである。
FoMEは1.7TBの頭皮と頭蓋内脳波記録のデータセットで事前訓練されており、1,096kのステップで745Mのパラメータが訓練されている。
論文 参考訳(メタデータ) (2024-09-19T04:22:40Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Concept-based model explanations for Electronic Health Records [1.6837409766909865]
概念活性化ベクトル(TCAV)を用いたテストは、人間に理解可能な説明を提供する手段として最近導入された。
本手法を時系列データに拡張し,TCAVの適用をEHRの逐次予測に適用する。
論文 参考訳(メタデータ) (2020-12-03T22:18:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。