論文の概要: Causal Structure Discovery for Error Diagnostics of Children's ASR
- arxiv url: http://arxiv.org/abs/2506.00402v1
- Date: Sat, 31 May 2025 05:44:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.896818
- Title: Causal Structure Discovery for Error Diagnostics of Children's ASR
- Title(参考訳): 小児ASRの誤り診断のための因果構造発見
- Authors: Vishwanath Pratap Singh, Md. Sahidullah, Tomi Kinnunen,
- Abstract要約: 子どもの自動音声認識(ASR)は、相互依存因子が混在しているため、大人に比べて性能が劣ることが多い。
生理学,認知学,外因性要因,およびASRエラーの相互依存関係を明らかにするために,因果構造発見を導入する。
分析を微調整モデルに拡張し、微調整によって緩和される要因を識別し、ほとんど影響を受けない。
- 参考スコア(独自算出の注目度): 12.9962275871176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Children's automatic speech recognition (ASR) often underperforms compared to that of adults due to a confluence of interdependent factors: physiological (e.g., smaller vocal tracts), cognitive (e.g., underdeveloped pronunciation), and extrinsic (e.g., vocabulary limitations, background noise). Existing analysis methods examine the impact of these factors in isolation, neglecting interdependencies-such as age affecting ASR accuracy both directly and indirectly via pronunciation skills. In this paper, we introduce a causal structure discovery to unravel these interdependent relationships among physiology, cognition, extrinsic factors, and ASR errors. Then, we employ causal quantification to measure each factor's impact on children's ASR. We extend the analysis to fine-tuned models to identify which factors are mitigated by fine-tuning and which remain largely unaffected. Experiments on Whisper and Wav2Vec2.0 demonstrate the generalizability of our findings across different ASR systems.
- Abstract(参考訳): 幼児の自動音声認識(ASR)は、生理的(例えば、より小さい声道)、認知的(eg、未発達の発音)、外因性(eg、語彙制限、背景雑音)という、相互に依存する要因が混在しているため、大人のそれと比較すると性能が劣ることが多い。
既存の分析手法では、発音スキルを介して、ASRの精度に直接的および間接的に影響を及ぼす年齢など、相互依存を無視し、これらの要因が単独で与える影響について検討している。
本稿では、生理学、認知学、外因性要因、およびASRエラーの相互依存関係を明らかにするために、因果構造発見を導入する。
そこで我々は,それぞれの要因が子どものASRに与える影響を測定するために因果定量化を用いる。
分析を微調整モデルに拡張し、微調整によって緩和される要因を識別し、ほとんど影響を受けない。
Whisper と Wav2Vec2.0 の実験は、異なる ASR システム間での発見の一般化性を実証している。
関連論文リスト
- Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms [17.074858228123706]
本稿では、因果関係の観測ラベルによって教師される因果関係の非絡み合い表現を学習するための枠組みを提案する。
この枠組みは, 極めて不整合な因果関係を生じさせ, 介入の堅牢性を向上し, 反事実発生と相容れないことを示す。
論文 参考訳(メタデータ) (2023-06-02T00:28:48Z) - CausalDialogue: Modeling Utterance-level Causality in Conversations [83.03604651485327]
クラウドソーシングを通じて、CausalDialogueという新しいデータセットをコンパイルし、拡張しました。
このデータセットは、有向非巡回グラフ(DAG)構造内に複数の因果効果対を含む。
ニューラル会話モデルの訓練における発話レベルにおける因果性の影響を高めるために,Exponential Average Treatment Effect (ExMATE) と呼ばれる因果性強化手法を提案する。
論文 参考訳(メタデータ) (2022-12-20T18:31:50Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
変分オートエンコーダ(VAE)の枠組みは、観測から独立した因子をアンタングルするために一般的に用いられる。
本稿では, 因果内因性因子を因果内因性因子に変換する因果層を含むVOEベースの新しいフレームワークCausalVAEを提案する。
その結果、CausalVAEが学習した因果表現は意味論的に解釈可能であり、DAG(Directed Acyclic Graph)としての因果関係は精度良く同定された。
論文 参考訳(メタデータ) (2020-04-18T20:09:34Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。