論文の概要: Comparing Traditional and Reinforcement-Learning Methods for Energy Storage Control
- arxiv url: http://arxiv.org/abs/2506.00459v1
- Date: Sat, 31 May 2025 08:25:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.087913
- Title: Comparing Traditional and Reinforcement-Learning Methods for Energy Storage Control
- Title(参考訳): エネルギー貯蔵制御における伝統的・強化学習法の比較
- Authors: Elinor Ginzburg, Itay Segev, Yoash Levron, Sarah Keren,
- Abstract要約: エネルギー貯蔵管理における従来の学習手法と強化学習手法のトレードオフをよりよく理解することを目的としている。
従来のRL手法とRL手法のパフォーマンスを比較し,各手法が有効な設定について考察し,今後の研究への道筋を提案する。
- 参考スコア(独自算出の注目度): 6.452975320319021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We aim to better understand the tradeoffs between traditional and reinforcement learning (RL) approaches for energy storage management. More specifically, we wish to better understand the performance loss incurred when using a generative RL policy instead of using a traditional approach to find optimal control policies for specific instances. Our comparison is based on a simplified micro-grid model, that includes a load component, a photovoltaic source, and a storage device. Based on this model, we examine three use cases of increasing complexity: ideal storage with convex cost functions, lossy storage devices, and lossy storage devices with convex transmission losses. With the aim of promoting the principled use RL based methods in this challenging and important domain, we provide a detailed formulation of each use case and a detailed description of the optimization challenges. We then compare the performance of traditional and RL methods, discuss settings in which it is beneficial to use each method, and suggest avenues for future investigation.
- Abstract(参考訳): エネルギー貯蔵管理における従来の強化学習(RL)と強化学習(RL)のトレードオフをよりよく理解することを目的としている。
より具体的には、特定のインスタンスに対して最適な制御ポリシーを見つけるために従来のアプローチを使うのではなく、生成的RLポリシーを使用する際に生じるパフォーマンス損失をよりよく理解したいと考えています。
本比較は,負荷成分,太陽光発電源,蓄電装置を含む簡易なマイクログリッドモデルに基づく。
本モデルに基づいて, コンベックスコスト機能を備えた理想記憶装置, 損失記憶装置, 損失記憶装置の3つのユースケースについて検討した。
この難易度と重要な領域におけるRLに基づく原則的手法の推進を目的として,各ユースケースの詳細な定式化と最適化課題の詳細な説明を行う。
次に,従来のRL手法とRL手法のパフォーマンスを比較し,各手法が有用である設定について議論し,今後の研究への道筋を提案する。
関連論文リスト
- Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
本稿では,最適優位関数を直接近似する新しい2段階ポリシー最適化フレームワークを提案する。
A$*-POは、幅広い数学的推論ベンチマークで競合性能を達成する。
PPO、GRPO、REBELと比較して、トレーニング時間を最大2$times$、ピークメモリ使用率を30%以上削減する。
論文 参考訳(メタデータ) (2025-05-27T03:58:50Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
強化学習(Reinforcement Learning, RL)は、ニューラルネットワーク最適化のための強力なツールとして登場した。
大幅な進歩にもかかわらず、既存のRLアプローチは報酬信号の減少や大規模な行動空間における非効率な探索といった課題に直面している。
統計的比較モデルを用いて定量的報酬信号を定性的選好信号に変換する新しい手法であるPreference Optimizationを提案する。
論文 参考訳(メタデータ) (2025-05-13T16:47:00Z) - PearSAN: A Machine Learning Method for Inverse Design using Pearson Correlated Surrogate Annealing [66.27103948750306]
PearSANは、大きな設計空間を持つ逆設計問題に適用可能な機械学習支援最適化アルゴリズムである。
ピアソン相関代理モデルを用いて、真の設計計量のメリットの図形を予測する。
最先端の最大設計効率は97%で、少なくとも以前の方法よりも桁違いに高速である。
論文 参考訳(メタデータ) (2024-12-26T17:02:19Z) - Distill2Explain: Differentiable decision trees for explainable reinforcement learning in energy application controllers [5.311053322050159]
住宅セクターはエネルギー柔軟性の重要な(潜在的)源である。
そのようなタスクの潜在的制御フレームワークは、データ駆動型制御、特にモデルフリー強化学習(RL)である。
RLは、環境と対話し、データに基づいて純粋に学習し、人間の介入を最小限に抑えて、優れた制御ポリシーを学ぶ。
本稿では、微分可能な決定木を用いて、説明可能なRLポリシーを得るための新しい方法を提案する。
論文 参考訳(メタデータ) (2024-03-18T16:09:49Z) - Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems [11.03157076666012]
エネルギー貯蔵システム(ESS)はエネルギー市場において重要な要素であり、エネルギー供給者と消費者の両方に役立っている。
エネルギー市場におけるESSの柔軟性を高めるために、異種太陽光発電(PV-ESS)を提案する。
我々は、現実のシナリオを反映して、劣化、資本、運用・保守コストを考慮した包括的コスト関数を開発する。
論文 参考訳(メタデータ) (2023-10-20T02:26:17Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Multi-market Energy Optimization with Renewables via Reinforcement
Learning [1.0878040851638]
本稿では,再生可能エネルギーと貯蔵量を組み合わせた発電プラントの運転を最適化するための深層強化学習フレームワークを提案する。
このフレームワークは、ストレージデバイスによる時間結合、再生可能エネルギー生成の不確実性、エネルギー価格、非線形ストレージモデルなどの複雑さを扱う。
複雑なストレージモデルを統合するためにRLを使用し、凸と微分可能なコンポーネントモデルを必要とする最適化ベースのメソッドの制限を克服する。
論文 参考訳(メタデータ) (2023-06-13T21:35:24Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Multi-fidelity reinforcement learning framework for shape optimization [0.8258451067861933]
マルチファイダリティ・シミュレーション・セッティングを利用する制御型トランスファー学習フレームワークを提案する。
我々の戦略は高レイノルズ数での翼形状最適化問題に対して展開される。
本研究は,本フレームワークが他の科学的DRLシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-02-22T20:44:04Z) - Robust Predictable Control [149.71263296079388]
提案手法は,従来の手法よりもはるかに厳密な圧縮を実現し,標準的な情報ボトルネックよりも最大5倍高い報酬が得られることを示す。
また,本手法はより堅牢で,新しいタスクをより一般化したポリシーを学習することを示す。
論文 参考訳(メタデータ) (2021-09-07T17:29:34Z) - Deep Controlled Learning for Inventory Control [0.0]
Controlled Deep Learning (DCL)は、在庫問題に対処するために特別に設計された近似ポリシーに基づく新しいDRLフレームワークである。
DCLは、失われた在庫管理、分かりやすい在庫システム、そして無作為なリードタイムで在庫システムにおいて、既存の最先端のイテレーションを上回ります。
これらの大幅な性能改善とロバスト性改善は、在庫管理問題に適合したDRLアルゴリズムを効果的に適用する道を開く。
論文 参考訳(メタデータ) (2020-11-30T18:53:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。