M2WLLM: Multi-Modal Multi-Task Ultra-Short-term Wind Power Prediction Algorithm Based on Large Language Model
- URL: http://arxiv.org/abs/2506.00531v1
- Date: Sat, 31 May 2025 12:27:17 GMT
- Title: M2WLLM: Multi-Modal Multi-Task Ultra-Short-term Wind Power Prediction Algorithm Based on Large Language Model
- Authors: Hang Fana, Mingxuan Lib, Zuhan Zhanga, Long Chengc, Yujian Ye, Dunnan Liua,
- Abstract summary: This study introduces M2WLLM, an innovative model that leverages the capabilities of Large Language Models (LLMs) for predicting wind power output at granular time intervals.<n>M2WLLM overcomes the limitations of traditional and deep learning methods by seamlessly integrating textual information and temporal numerical data.<n>The empirical evaluations conducted on wind farm data from three Chinese provinces demonstrate that M2WLLM consistently outperforms existing methods.
- Score: 0.44531072184246007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of wind energy into power grids necessitates accurate ultra-short-term wind power forecasting to ensure grid stability and optimize resource allocation. This study introduces M2WLLM, an innovative model that leverages the capabilities of Large Language Models (LLMs) for predicting wind power output at granular time intervals. M2WLLM overcomes the limitations of traditional and deep learning methods by seamlessly integrating textual information and temporal numerical data, significantly improving wind power forecasting accuracy through multi-modal data. Its architecture features a Prompt Embedder and a Data Embedder, enabling an effective fusion of textual prompts and numerical inputs within the LLMs framework. The Semantic Augmenter within the Data Embedder translates temporal data into a format that the LLMs can comprehend, enabling it to extract latent features and improve prediction accuracy. The empirical evaluations conducted on wind farm data from three Chinese provinces demonstrate that M2WLLM consistently outperforms existing methods, such as GPT4TS, across various datasets and prediction horizons. The results highlight LLMs' ability to enhance accuracy and robustness in ultra-short-term forecasting and showcase their strong few-shot learning capabilities.
Related papers
- LLM-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting [4.881217428928315]
Time series forecasting aims to model temporal dependencies among variables for future state inference.<n>Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting.<n>We propose LLM-Prompt, an LLM-based time series forecasting framework integrating multi-prompt information and cross-modal semantic alignment.
arXiv Detail & Related papers (2025-06-21T08:22:25Z) - Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond [55.984684518346924]
We recast Knowledge Tracing as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable.<n>Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text.<n> Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories.
arXiv Detail & Related papers (2025-06-20T13:21:14Z) - When can isotropy help adapt LLMs' next word prediction to numerical domains? [53.98633183204453]
It is shown that the isotropic property of LLM embeddings in contextual embedding space preserves the underlying structure of representations.<n> Experiments show that different characteristics of numerical data and model architectures have different impacts on isotropy.
arXiv Detail & Related papers (2025-05-22T05:10:34Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs [11.1036247482657]
We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting.<n>Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters.
arXiv Detail & Related papers (2025-03-05T15:27:36Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXL is a multi-modal prediction framework that integrates a prototype-based time series encoder.<n>It produces more accurate predictions and interpretable explanations.<n> Empirical evaluations on four real-world datasets demonstrate that TimeXL achieves up to 8.9% improvement in AUC.
arXiv Detail & Related papers (2025-03-02T20:40:53Z) - EF-LLM: Energy Forecasting LLM with AI-assisted Automation, Enhanced Sparse Prediction, Hallucination Detection [8.540308127679985]
We propose the Energy Forecasting Large Language Model (EF-LLM), which integrates domain knowledge and temporal data for time-series forecasting.<n>EF-LLM's human-AI interaction capabilities lower the entry barrier in forecasting tasks, reducing the need for extra expert involvement.<n>We have achieved success in energy prediction scenarios for load, photovoltaic, and wind power forecast.
arXiv Detail & Related papers (2024-10-30T11:22:37Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Beam Prediction based on Large Language Models [51.45077318268427]
We formulate the millimeter wave (mmWave) beam prediction problem as a time series forecasting task.<n>We transform historical observations into text-based representations using a trainable tokenizer.<n>Our method harnesses the power of LLMs to predict future optimal beams.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.<n>We find that fine-tuning LLMs with raw texts can significantly improve performance.<n>However, issues such as popularity bias and the long-tail problem persist in LLMs.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - LLM4TS: Aligning Pre-Trained LLMs as Data-Efficient Time-Series Forecasters [11.796765525301051]
We propose a framework for time-series forecasting with pre-trained Large Language Models (LLMs)<n>LLM4TS consists of a two-stage fine-tuning strategy to align LLMs with the nuances of time-series data, and the forecasting fine-tuning stage for downstream time-series forecasting tasks.<n>Our framework features a novel two-level aggregation method that integrates multi-scale temporal data within pre-trained LLMs, enhancing their ability to interpret time-specific information.
arXiv Detail & Related papers (2023-08-16T16:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.