論文の概要: Towards Multi-dimensional Evaluation of LLM Summarization across Domains and Languages
- arxiv url: http://arxiv.org/abs/2506.00549v1
- Date: Sat, 31 May 2025 13:12:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.192266
- Title: Towards Multi-dimensional Evaluation of LLM Summarization across Domains and Languages
- Title(参考訳): ドメイン・言語間のLLM要約の多次元評価に向けて
- Authors: Hyangsuk Min, Yuho Lee, Minjeong Ban, Jiaqi Deng, Nicole Hee-Yeon Kim, Taewon Yun, Hang Su, Jason Cai, Hwanjun Song,
- Abstract要約: MSumBenchは、英語と中国語の要約の多次元多領域評価である。
8つの現代的な要約モデルを評価することにより、ドメインや言語間で異なるパフォーマンスパターンが見つかる。
- 参考スコア(独自算出の注目度): 17.028968054304947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluation frameworks for text summarization have evolved in terms of both domain coverage and metrics. However, existing benchmarks still lack domain-specific assessment criteria, remain predominantly English-centric, and face challenges with human annotation due to the complexity of reasoning. To address these, we introduce MSumBench, which provides a multi-dimensional, multi-domain evaluation of summarization in English and Chinese. It also incorporates specialized assessment criteria for each domain and leverages a multi-agent debate system to enhance annotation quality. By evaluating eight modern summarization models, we discover distinct performance patterns across domains and languages. We further examine large language models as summary evaluators, analyzing the correlation between their evaluation and summarization capabilities, and uncovering systematic bias in their assessment of self-generated summaries. Our benchmark dataset is publicly available at https://github.com/DISL-Lab/MSumBench.
- Abstract(参考訳): テキスト要約のための評価フレームワークは、ドメインカバレッジとメトリクスの両方の観点から進化してきた。
しかし、既存のベンチマークにはドメイン固有の評価基準がなく、主に英語中心であり、推論の複雑さのために人間のアノテーションによる課題に直面している。
そこで本稿では,英語と中国語の要約を多次元・多領域で評価するMSumBenchを紹介する。
また、各ドメインの特別な評価基準を取り入れ、アノテーションの品質を高めるためにマルチエージェントの議論システムを活用している。
8つの現代的な要約モデルを評価することにより、ドメインや言語間で異なるパフォーマンスパターンが見つかる。
さらに,大規模言語モデルを要約評価器として検討し,その評価と要約能力の相関を解析し,自己生成要約評価における体系的バイアスを明らかにする。
ベンチマークデータセットはhttps://github.com/DISL-Lab/MSumBench.comで公開されています。
関連論文リスト
- Beyond Metrics: A Critical Analysis of the Variability in Large Language Model Evaluation Frameworks [3.773596042872403]
大規模言語モデル(LLM)は進化を続けており、堅牢で標準化された評価ベンチマークの必要性が最重要である。
さまざまなフレームワークがこの分野への注目すべき貢献として現れ、包括的な評価テストとベンチマークを提供している。
本稿では,これらの評価手法の探索と批判的分析を行い,その強度,限界,および自然言語処理における最先端の進展に対する影響について述べる。
論文 参考訳(メタデータ) (2024-07-29T03:37:14Z) - A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
本稿では,大規模言語モデル(LLM)に基づくテキスト要約評価手法を提案する。
以上の結果から,LLMの評価は人間の評価と密接に一致しているが,ROUGE-2,BERTScore,SummaCなどの広く使用されている自動測定値には一貫性がない。
論文 参考訳(メタデータ) (2024-06-30T16:12:37Z) - Simple LLM Prompting is State-of-the-Art for Robust and Multilingual
Dialogue Evaluation [7.767020408405403]
本稿では,既存の評価モデルの強みを生かして,大規模言語モデル(LLM)の促進という新たなパラダイムを提案する。
実験により,本フレームワークは,いくつかのベンチマークにおいて,平均スピアマン相関スコアを用いて,技術結果の状態を達成していることを示す。
論文 参考訳(メタデータ) (2023-08-31T15:19:28Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - SEAHORSE: A Multilingual, Multifaceted Dataset for Summarization
Evaluation [52.186343500576214]
本稿では,多言語・多面的要約評価のためのデータセットSEAHORSEを紹介する。
SEAHORSEは、テキスト品質の6次元に沿って人間格付けされた96Kの要約で構成されている。
本稿では,SEAHORSEでトレーニングしたメトリクスが,ドメイン外メタ評価ベンチマークTRUEとmFACEで高い性能を示すことを示す。
論文 参考訳(メタデータ) (2023-05-22T16:25:07Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Towards Interpretable Summary Evaluation via Allocation of Contextual
Embeddings to Reference Text Topics [1.5749416770494706]
多面的解釈可能な要約評価法(MISEM)は、要約の文脈トークンの埋め込みを、参照テキストで特定されたセマンティックトピックに割り当てることに基づいている。
MISEMはTAC'08データセット上の人間の判断と有望な.404ピアソン相関を達成している。
論文 参考訳(メタデータ) (2022-10-25T17:09:08Z) - FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation [64.9546787488337]
本稿では、Few-shot Region-aware Machine Translationのための新しいデータセットと評価ベンチマークFRMTを提案する。
このデータセットは、英語からポルトガル語と中国語の2つの地域変種へのプロの翻訳で構成されている。
論文 参考訳(メタデータ) (2022-10-01T05:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。