論文の概要: Linear Representation Transferability Hypothesis: Leveraging Small Models to Steer Large Models
- arxiv url: http://arxiv.org/abs/2506.00653v2
- Date: Tue, 03 Jun 2025 15:52:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.392804
- Title: Linear Representation Transferability Hypothesis: Leveraging Small Models to Steer Large Models
- Title(参考訳): 線形表現伝達可能性仮説:小さなモデルをステアラーモデルに活用する
- Authors: Femi Bello, Anubrata Das, Fanzhi Zeng, Fangcong Yin, Liu Leqi,
- Abstract要約: 同一データ上で訓練されたモデル間で学習された表現は、基本特徴の近辺集合の線形結合として表現できることを示す。
これらの基本機能は、学習タスク自体を基盤とし、スケールに関係なく、モデル間で一貫性を維持します。
- 参考スコア(独自算出の注目度): 6.390475802910619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has been hypothesized that neural networks with similar architectures trained on similar data learn shared representations relevant to the learning task. We build on this idea by extending the conceptual framework where representations learned across models trained on the same data can be expressed as linear combinations of a \emph{universal} set of basis features. These basis features underlie the learning task itself and remain consistent across models, regardless of scale. From this framework, we propose the \textbf{Linear Representation Transferability (LRT)} Hypothesis -- that there exists an affine transformation between the representation spaces of different models. To test this hypothesis, we learn affine mappings between the hidden states of models of different sizes and evaluate whether steering vectors -- directions in hidden state space associated with specific model behaviors -- retain their semantic effect when transferred from small to large language models using the learned mappings. We find strong empirical evidence that such affine mappings can preserve steering behaviors. These findings suggest that representations learned by small models can be used to guide the behavior of large models, and that the LRT hypothesis may be a promising direction on understanding representation alignment across model scales.
- Abstract(参考訳): 類似したアーキテクチャでトレーニングされたニューラルネットワークは、学習タスクに関連する共有表現を学習する、という仮説が立てられている。
我々は、同じデータ上で訓練されたモデル間で学習された表現を、基礎的特徴の集合であるemph{universal}の線形結合として表現できる概念的枠組みを拡張して、この考え方に基づいて構築する。
これらの基本機能は、学習タスク自体を基盤とし、スケールに関係なく、モデル間で一貫性を維持します。
このフレームワークから,異なるモデルの表現空間の間にアフィン変換が存在するという<textbf{Linear Representation Transferability(LRT)仮説を提案する。この仮説をテストするために,異なるサイズのモデルの隠れ状態間のアフィンマッピングを学習し,特定のモデルの振る舞いに関連する隠れ状態空間の方向であるステアリングベクトルが,学習されたマッピングを用いて小から大規模言語モデルに変換された際のセマンティック効果を保っているかを評価する。
我々はこのようなアフィンマッピングが操舵行動を保存することができるという強い実証的証拠を見出した。
これらの結果から,小型モデルで学習した表現は大規模モデルの挙動を導くのに有効であり,LRT仮説はモデルスケール間の表現アライメントを理解する上で有望な方向である可能性が示唆された。
関連論文リスト
- Connecting Neural Models Latent Geometries with Relative Geodesic Representations [21.71782603770616]
遅延構造を異なる潜在空間間で共有する場合、表現間の相対距離を歪みまで保存できることが示される。
異なるニューラルモデルは、ほぼ同じ基礎多様体をパラメータ化し、プルバック計量に基づく表現を導入すると仮定する。
本手法は,オートエンコーダと視覚基盤識別モデルを対象として,モデルの縫合と検索のタスクについて検証する。
論文 参考訳(メタデータ) (2025-06-02T12:34:55Z) - Latent Functional Maps: a spectral framework for representation alignment [34.20582953800544]
表現学習コミュニティに多目的フレームワークを導入し、(i)異なる空間を解釈可能な方法で比較し、その内在的類似性を測定すること、(ii)教師なしと弱教師付きの両方で対応性を見出すこと、(iii)異なる空間間の表現を効果的に伝達すること。
我々は, 縫合作業から検索作業, および複数のモダリティに至るまで, 様々なアプリケーションにおいて, フレームワークを検証し, 表現アライメントのためのスウィスアームナイフとして機能することを示す。
論文 参考訳(メタデータ) (2024-06-20T10:43:28Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - On the Origins of Linear Representations in Large Language Models [51.88404605700344]
我々は,次のトークン予測の概念力学を定式化するために,単純な潜在変数モデルを導入する。
実験により、潜在変数モデルと一致するデータから学習すると線形表現が現れることが示された。
また、LLaMA-2大言語モデルを用いて、理論のいくつかの予測を検証した。
論文 参考訳(メタデータ) (2024-03-06T17:17:36Z) - Meaning Representations from Trajectories in Autoregressive Models [106.63181745054571]
入力テキストを拡張可能なすべてのトラジェクトリの分布を考慮し,自己回帰言語モデルから意味表現を抽出する。
この戦略はプロンプトフリーであり、微調整は必要とせず、事前訓練された自己回帰モデルにも適用できる。
我々は,大規模なモデルから得られた表現が人間のアノテーションとよく一致し,意味的類似性タスクにおける他のゼロショットおよびプロンプトフリーメソッドよりも優れており,標準埋め込みが扱えないより複雑なエンタテインメントや包含タスクの解決に使用できることを実証的に示す。
論文 参考訳(メタデータ) (2023-10-23T04:35:58Z) - Specify Robust Causal Representation from Mixed Observations [35.387451486213344]
観測から純粋に表現を学習することは、予測モデルに有利な低次元のコンパクトな表現を学習する問題を懸念する。
本研究では,観測データからこのような表現を学習するための学習手法を開発した。
理論的および実験的に、学習された因果表現で訓練されたモデルは、敵の攻撃や分布シフトの下でより堅牢であることを示す。
論文 参考訳(メタデータ) (2023-10-21T02:18:35Z) - Flow Factorized Representation Learning [109.51947536586677]
本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
論文 参考訳(メタデータ) (2023-09-22T20:15:37Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
自己教師型学習(SSL)はコンピュータビジョンにおいて望ましいパラダイムとして登場した。
本稿では,各特徴空間内の局所的近傍を用いて異なるSSLモデルを分析するためのデータ駆動幾何学的手法を提案する。
論文 参考訳(メタデータ) (2022-09-18T18:15:38Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
我々は、トポロジと表現の幾何学を強調する統計のクラスを提示する。
モデル選択に使用する場合の感度と特異性の観点から,これらの統計値を評価する。
これらの新しい手法により、脳やコンピューター科学者は、脳やモデルによって学習された動的表現変換を可視化することができる。
論文 参考訳(メタデータ) (2022-03-10T17:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。