論文の概要: Latent Functional Maps: a spectral framework for representation alignment
- arxiv url: http://arxiv.org/abs/2406.14183v3
- Date: Wed, 30 Oct 2024 22:47:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:57:00.266104
- Title: Latent Functional Maps: a spectral framework for representation alignment
- Title(参考訳): 潜在関数型マップ:表現アライメントのためのスペクトルフレームワーク
- Authors: Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, Emanuele Rodolà,
- Abstract要約: 表現学習コミュニティに多目的フレームワークを導入し、(i)異なる空間を解釈可能な方法で比較し、その内在的類似性を測定すること、(ii)教師なしと弱教師付きの両方で対応性を見出すこと、(iii)異なる空間間の表現を効果的に伝達すること。
我々は, 縫合作業から検索作業, および複数のモダリティに至るまで, 様々なアプリケーションにおいて, フレームワークを検証し, 表現アライメントのためのスウィスアームナイフとして機能することを示す。
- 参考スコア(独自算出の注目度): 34.20582953800544
- License:
- Abstract: Neural models learn data representations that lie on low-dimensional manifolds, yet modeling the relation between these representational spaces is an ongoing challenge. By integrating spectral geometry principles into neural modeling, we show that this problem can be better addressed in the functional domain, mitigating complexity, while enhancing interpretability and performances on downstream tasks. To this end, we introduce a multi-purpose framework to the representation learning community, which allows to: (i) compare different spaces in an interpretable way and measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised and weakly supervised settings, and (iii) to effectively transfer representations between distinct spaces.We validate our framework on various applications, ranging from stitching to retrieval tasks, and on multiple modalities, demonstrating that Latent Functional Maps can serve as a swiss-army knife for representation alignment.
- Abstract(参考訳): ニューラルネットワークは低次元多様体上のデータ表現を学習するが、これらの表現空間間の関係をモデル化することは、現在進行中の課題である。
スペクトル幾何学の原理をニューラルモデリングに統合することにより、この問題は機能領域においてよりうまく対処でき、複雑さを軽減し、下流タスクの解釈可能性や性能を向上させることができることを示す。
この目的のために,表現学習コミュニティに多目的フレームワークを導入する。
(i)異なる空間を解釈可能な方法で比較し、その固有の類似性を測定すること。
(二)非監督的、弱監督的双方において、両者の対応を見いだし、
(iii) 異なる空間間の表現を効果的に転送するために, 縫合作業から検索作業まで, および複数のモダリティにおいて, フレームワークを検証し, 表現アライメントのためのスワイスアームナイフとして機能することを示す。
関連論文リスト
- An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
ゼロショットの人間の骨格に基づく行動認識は、トレーニング中に見られるカテゴリ外の行動を認識するモデルを構築することを目的としている。
従来の研究では、シーケンスの視覚的空間分布と意味的空間分布の整合性に焦点が当てられていた。
強固で頑健な表現を得るために,新たな損失関数サンプリング手法を提案する。
論文 参考訳(メタデータ) (2024-06-02T06:53:01Z) - Neural Isometries: Taming Transformations for Equivariant ML [8.203292895010748]
本稿では,観測空間を汎用潜在空間にマップする方法を学習する自動エンコーダフレームワークであるNeural Isometriesを紹介する。
トレーニング済みの潜伏空間で動作する単純なオフ・ザ・シェルフ同変ネットワークは、巧妙に設計された手作りのネットワークと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2024-05-29T17:24:25Z) - Zero-Shot Image Feature Consensus with Deep Functional Maps [20.988872402347756]
より優れた対応戦略が利用可能であることを示し,対応フィールドに直接構造を課す関数写像について述べる。
提案手法は,学習対象の大規模視覚モデルに埋め込まれた知識をよりよく反映し,よりスムーズなだけでなく,より正確に対応できることを示す。
論文 参考訳(メタデータ) (2024-03-18T17:59:47Z) - Support-set based Multi-modal Representation Enhancement for Video
Captioning [121.70886789958799]
サンプル間で共有されるセマンティックサブ空間において、リッチな情報をマイニングするためのサポートセットベースのマルチモーダル表現拡張(SMRE)モデルを提案する。
具体的には、サンプル間の基礎となる関係を学習し、意味的関連視覚要素を得るためのサポートセットを構築するためのサポートセット構築(SC)モジュールを提案する。
本研究では,SST(Semantic Space Transformation)モジュールを設計し,相対距離を制約し,マルチモーダルインタラクションを自己管理的に管理する。
論文 参考訳(メタデータ) (2022-05-19T03:40:29Z) - GMC -- Geometric Multimodal Contrastive Representation Learning [26.437843775786856]
本稿では,2つの主成分からなる表現学習手法を提案する。
我々は,GMC表現が意味的にリッチであり,最先端の性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2022-02-07T18:26:32Z) - Multiway Non-rigid Point Cloud Registration via Learned Functional Map
Synchronization [105.14877281665011]
我々は、点雲上に定義された学習関数に関する地図を同期させることにより、複数の非剛体形状を登録する新しい方法であるSyNoRiMを提案する。
提案手法は,登録精度において最先端の性能を達成できることを実証する。
論文 参考訳(メタデータ) (2021-11-25T02:37:59Z) - Image Synthesis via Semantic Composition [74.68191130898805]
本稿では,その意味的レイアウトに基づいて現実的なイメージを合成する新しい手法を提案する。
類似した外観を持つ物体に対して、類似した表現を共有するという仮説が立てられている。
本手法は, 空間的変化と関連表現の両方を生じる, 外観相関による領域間の依存関係を確立する。
論文 参考訳(メタデータ) (2021-09-15T02:26:07Z) - Cross-Modal Discrete Representation Learning [73.68393416984618]
本稿では,様々なモダリティにまたがるより細かい粒度を捉える表現を学習する自己教師型学習フレームワークを提案する。
我々のフレームワークは、異なるモダリティ間で共有されるベクトル量子化によって生成される離散化された埋め込み空間に依存している。
論文 参考訳(メタデータ) (2021-06-10T00:23:33Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
本稿では,オブジェクトのスパースなビュー集合を集約して,半単純3次元表現を容積特徴格子の形で計算する手法を提案する。
我々のアプローチの鍵となるのは、カメラのポーズを明示することなく、ビューを持ち上げることができるオブジェクト中心の標準3D座標システムである。
画素から標準座標系への対称対応マッピングの計算により、未知の領域への情報伝達がより良くなることを示す。
論文 参考訳(メタデータ) (2020-07-20T17:38:31Z) - The Immersion of Directed Multi-graphs in Embedding Fields.
Generalisations [0.0]
本稿では,ハイブリッドカテゴリー,シンボル,知覚感覚,知覚潜在データを表す汎用モデルについて概説する。
この表現は、コンピュータビジョンにおける様々な機械学習モデル、NLP/NLUで現在使用されている。
これは、様々な潜在空間からの埋め込みを表す少なくともいくつかのエッジ属性を持つ有向リレーショナル型マルチグラフを提供することによって達成される。
論文 参考訳(メタデータ) (2020-04-28T09:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。