CineMA: A Foundation Model for Cine Cardiac MRI
- URL: http://arxiv.org/abs/2506.00679v1
- Date: Sat, 31 May 2025 19:12:34 GMT
- Title: CineMA: A Foundation Model for Cine Cardiac MRI
- Authors: Yunguan Fu, Weixi Yi, Charlotte Manisty, Anish N Bhuva, Thomas A Treibel, James C Moon, Matthew J Clarkson, Rhodri Huw Davies, Yipeng Hu,
- Abstract summary: We developed CineMA, a foundation AI model automating clinically important measurements with limited labels.<n>CineMA is a self-consuming autoencoder model trained on 74,916 cine CMR studies to reconstruct images from masked inputs.<n>It was evaluated across eight datasets on 23 tasks from four categories: ventricle and myocardium segmentation, left and right ventricle ejection fraction calculation, disease detection and classification, and landmark localisation.
- Score: 5.568379273240117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac magnetic resonance (CMR) is a key investigation in clinical cardiovascular medicine and has been used extensively in population research. However, extracting clinically important measurements such as ejection fraction for diagnosing cardiovascular diseases remains time-consuming and subjective. We developed CineMA, a foundation AI model automating these tasks with limited labels. CineMA is a self-supervised autoencoder model trained on 74,916 cine CMR studies to reconstruct images from masked inputs. After fine-tuning, it was evaluated across eight datasets on 23 tasks from four categories: ventricle and myocardium segmentation, left and right ventricle ejection fraction calculation, disease detection and classification, and landmark localisation. CineMA is the first foundation model for cine CMR to match or outperform convolutional neural networks (CNNs). CineMA demonstrated greater label efficiency than CNNs, achieving comparable or better performance with fewer annotations. This reduces the burden of clinician labelling and supports replacing task-specific training with fine-tuning foundation models in future cardiac imaging applications. Models and code for pre-training and fine-tuning are available at https://github.com/mathpluscode/CineMA, democratising access to high-performance models that otherwise require substantial computational resources, promoting reproducibility and accelerating clinical translation.
Related papers
- Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge [56.28872161153236]
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis.<n>The efficacy of these models is highly dependent on the availability of high-quality, artifact-free images.<n>To promote research in this domain, we organized the MICCAI CMRxMotion challenge.
arXiv Detail & Related papers (2025-07-25T11:12:21Z) - Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications [9.113410118160438]
We present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data.<n>CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data.<n>In the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences.
arXiv Detail & Related papers (2025-05-06T11:06:41Z) - Classification, Regression and Segmentation directly from k-Space in Cardiac MRI [11.690226907936903]
We propose KMAE, a Transformer-based model specifically designed to process k-space data directly.
KMAE can handle critical cardiac disease classification, relevant phenotype regression, and cardiac segmentation tasks.
We utilize this model to investigate the potential of k-space-based diagnosis in cardiac MRI.
arXiv Detail & Related papers (2024-07-29T15:35:35Z) - LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation [5.377722774297911]
We introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos.<n> Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images.
arXiv Detail & Related papers (2024-07-02T12:54:32Z) - CMRxRecon2024: A Multi-Modality, Multi-View K-Space Dataset Boosting Universal Machine Learning for Accelerated Cardiac MRI [40.11088079783521]
The CMRxRecon2024 dataset is the largest and most protocal-diverse publicly available cardiac k-space dataset.<n>It is acquired from 330 healthy volunteers, covering commonly used modalities, anatomical views, and acquisition trajectories in clinical cardiac MRI.
arXiv Detail & Related papers (2024-06-27T09:50:20Z) - Successive Subspace Learning for Cardiac Disease Classification with
Two-phase Deformation Fields from Cine MRI [36.044984400761535]
This work proposes a lightweight successive subspace learning framework for CVD classification.
It is based on an interpretable feedforward design, in conjunction with a cardiac atlas.
Compared with 3D CNN-based approaches, our framework achieves superior classification performance with 140$times$ fewer parameters.
arXiv Detail & Related papers (2023-01-21T15:00:59Z) - Motion-related Artefact Classification Using Patch-based Ensemble and
Transfer Learning in Cardiac MRI [5.186000805926489]
We propose an automatic cardiac MRI quality estimation framework using ensemble and transfer learning.
Multiple pre-trained models were initialised and fine-tuned on 2-dimensional image patches sampled from the training data.
It achieved a classification accuracy of 78.8% and 70.0% on the training set and validation set, respectively.
arXiv Detail & Related papers (2022-10-14T11:31:40Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - CNN-based Cardiac Motion Extraction to Generate Deformable Geometric
Left Ventricle Myocardial Models from Cine MRI [0.0]
We propose a framework for the development of patient-specific geometric models of LV myocardium from cine cardiac MR images.
We use the VoxelMorph-based convolutional neural network (CNN) to propagate the isosurface mesh and volume mesh of the end-diastole frame to the subsequent frames of the cardiac cycle.
arXiv Detail & Related papers (2021-03-30T21:34:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.