Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications
- URL: http://arxiv.org/abs/2505.03426v1
- Date: Tue, 06 May 2025 11:06:41 GMT
- Title: Phenotype-Guided Generative Model for High-Fidelity Cardiac MRI Synthesis: Advancing Pretraining and Clinical Applications
- Authors: Ziyu Li, Yujian Hu, Zhengyao Ding, Yiheng Mao, Haitao Li, Fan Yi, Hongkun Zhang, Zhengxing Huang,
- Abstract summary: We present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data.<n>CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data.<n>In the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences.
- Score: 9.113410118160438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac Magnetic Resonance (CMR) imaging is a vital non-invasive tool for diagnosing heart diseases and evaluating cardiac health. However, the limited availability of large-scale, high-quality CMR datasets poses a major challenge to the effective application of artificial intelligence (AI) in this domain. Even the amount of unlabeled data and the health status it covers are difficult to meet the needs of model pretraining, which hinders the performance of AI models on downstream tasks. In this study, we present Cardiac Phenotype-Guided CMR Generation (CPGG), a novel approach for generating diverse CMR data that covers a wide spectrum of cardiac health status. The CPGG framework consists of two stages: in the first stage, a generative model is trained using cardiac phenotypes derived from CMR data; in the second stage, a masked autoregressive diffusion model, conditioned on these phenotypes, generates high-fidelity CMR cine sequences that capture both structural and functional features of the heart in a fine-grained manner. We synthesized a massive amount of CMR to expand the pretraining data. Experimental results show that CPGG generates high-quality synthetic CMR data, significantly improving performance on various downstream tasks, including diagnosis and cardiac phenotypes prediction. These gains are demonstrated across both public and private datasets, highlighting the effectiveness of our approach. Code is availabel at https://anonymous.4open.science/r/CPGG.
Related papers
- Augmentation-based Domain Generalization and Joint Training from Multiple Source Domains for Whole Heart Segmentation [0.49923266458151416]
cardiovascular diseases are the leading cause of death worldwide.<n>Semantic segmentations of important cardiac structures that represent the whole heart are useful to assess patient-specific cardiac morphology and pathology.<n>Deep learning-based methods for medical image segmentation achieved great advancements over the last decade.
arXiv Detail & Related papers (2025-08-06T15:37:22Z) - Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge [56.28872161153236]
Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis.<n>The efficacy of these models is highly dependent on the availability of high-quality, artifact-free images.<n>To promote research in this domain, we organized the MICCAI CMRxMotion challenge.
arXiv Detail & Related papers (2025-07-25T11:12:21Z) - Improving Myocardial Infarction Detection via Synthetic ECG Pretraining [0.0]
Myocardial infarction is a major cause of death globally, and accurate early diagnosis from electrocardiograms (ECGs) remains a clinical priority.<n>Deep learning models have shown promise for automated ECG interpretation, but require large amounts of labeled data.<n>We propose a physiology-aware pipeline that synthesizes 12-lead ECGs with tunable MI morphology and realistic noise.
arXiv Detail & Related papers (2025-06-29T14:29:55Z) - Synthetic Time Series Data Generation for Healthcare Applications: A PCG Case Study [43.28613210217385]
We employ and compare three state-of-the-art generative models to generate PCG data.<n>Our results demonstrate that the generated PCG data closely resembles the original datasets.<n>In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs.
arXiv Detail & Related papers (2024-12-17T18:07:40Z) - Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis [45.074243735766]
We propose a physics-guided diffusion model to generate high-quality dMRI.
Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process.
Our experiment results show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T07:09:19Z) - Whole Heart 3D+T Representation Learning Through Sparse 2D Cardiac MR Images [13.686473040836113]
We introduce a whole-heart self-supervised learning framework to automatically uncover the correlations between spatial and temporal patches throughout the cardiac stacks.
We train our model on 14,000 unlabeled CMR data from UK BioBank and evaluate it on 1,000 annotated data.
arXiv Detail & Related papers (2024-06-01T07:08:45Z) - Debiasing Cardiac Imaging with Controlled Latent Diffusion Models [1.802269171647208]
We propose a method to alleviate imbalances inherent in datasets through the generation of synthetic data.
We adopt ControlNet based on a denoising diffusion probabilistic model to condition on text assembled from patient metadata and cardiac geometry.
Our experiments demonstrate the effectiveness of the proposed approach in mitigating dataset imbalances.
arXiv Detail & Related papers (2024-03-28T15:41:43Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
We introduce Conditional Independent Components Analysis (Conditional ICA): a fast functional Magnetic Resonance Imaging (fMRI) data augmentation technique.
We show that Conditional ICA is successful at synthesizing data indistinguishable from observations, and that it yields gains in classification accuracy in brain decoding problems.
arXiv Detail & Related papers (2021-07-11T22:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.