Fovea Stacking: Imaging with Dynamic Localized Aberration Correction
- URL: http://arxiv.org/abs/2506.00716v1
- Date: Sat, 31 May 2025 21:15:27 GMT
- Title: Fovea Stacking: Imaging with Dynamic Localized Aberration Correction
- Authors: Shi Mao, Yogeshwar Mishra, Wolfgang Heidrich,
- Abstract summary: Fovea Stacking is a new type of imaging system that utilizes dynamic optical components called deformable phase plates (DPPs) for localized aberration correction anywhere on the image sensor.<n>By optimizing DPP deformations through a differentiable optical model, off-axis aberrations are corrected locally, producing a foveated image with enhanced sharpness at the fixation point - analogous to the eye's fovea.
- Score: 13.95616328498581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The desire for cameras with smaller form factors has recently lead to a push for exploring computational imaging systems with reduced optical complexity such as a smaller number of lens elements. Unfortunately such simplified optical systems usually suffer from severe aberrations, especially in off-axis regions, which can be difficult to correct purely in software. In this paper we introduce Fovea Stacking, a new type of imaging system that utilizes emerging dynamic optical components called deformable phase plates (DPPs) for localized aberration correction anywhere on the image sensor. By optimizing DPP deformations through a differentiable optical model, off-axis aberrations are corrected locally, producing a foveated image with enhanced sharpness at the fixation point - analogous to the eye's fovea. Stacking multiple such foveated images, each with a different fixation point, yields a composite image free from aberrations. To efficiently cover the entire field of view, we propose joint optimization of DPP deformations under imaging budget constraints. Due to the DPP device's non-linear behavior, we introduce a neural network-based control model for improved alignment between simulation-hardware performance. We further demonstrated that for extended depth-of-field imaging, fovea stacking outperforms traditional focus stacking in image quality. By integrating object detection or eye-tracking, the system can dynamically adjust the lens to track the object of interest-enabling real-time foveated video suitable for downstream applications such as surveillance or foveated virtual reality displays.
Related papers
- Learned Off-aperture Encoding for Wide Field-of-view RGBD Imaging [31.931929519577402]
This work explores an additional design choice by positioning a DOE off-aperture, enabling a spatial unmixing of the degrees of freedom.<n> Experimental results reveal that the off-aperture DOE enhances the imaging quality by over 5 dB in PSNR at a FoV of approximately $45circ$ when paired with a simple thin lens.
arXiv Detail & Related papers (2025-07-30T09:49:47Z) - LensNet: An End-to-End Learning Framework for Empirical Point Spread Function Modeling and Lensless Imaging Reconstruction [32.85180149439811]
Lensless imaging stands out as a promising alternative to conventional lens-based systems.<n>Traditional lensless techniques often require explicit calibrations and extensive pre-processing.<n>We propose LensNet, an end-to-end deep learning framework that integrates spatial-domain and frequency-domain representations.
arXiv Detail & Related papers (2025-05-03T09:11:52Z) - Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models [58.98742597810023]
Vision models have to behave in a robust way to disturbances such as noise or blur.<n>This paper studies two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions.<n> Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly.
arXiv Detail & Related papers (2025-04-25T17:23:47Z) - Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Curved Diffusion: A Generative Model With Optical Geometry Control [56.24220665691974]
The influence of different optical systems on the final scene appearance is frequently overlooked.
This study introduces a framework that intimately integrates a textto-image diffusion model with the particular lens used in image rendering.
arXiv Detail & Related papers (2023-11-29T13:06:48Z) - Revealing the preference for correcting separated aberrations in joint
optic-image design [19.852225245159598]
We characterize the optics with separated aberrations to achieve efficient joint design of complex systems such as smartphones and drones.
An image simulation system is presented to reproduce the genuine imaging procedure of lenses with large field-of-views.
Experiments reveal that the preference for correcting separated aberrations in joint design is as follows: longitudinal chromatic aberration, lateral chromatic aberration, spherical aberration, field curvature, and coma, with astigmatism coming last.
arXiv Detail & Related papers (2023-09-08T14:12:03Z) - Optical Aberration Correction in Postprocessing using Imaging Simulation [17.331939025195478]
The popularity of mobile photography continues to grow.
Recent cameras have shifted some of these correction tasks from optical design to postprocessing systems.
We propose a practical method for recovering the degradation caused by optical aberrations.
arXiv Detail & Related papers (2023-05-10T03:20:39Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
Existing methods face challenges in estimating the accurate correction field due to the uniform velocity assumption.
We propose a geometry-based Quadratic Rolling Shutter (QRS) motion solver, which precisely estimates the high-order correction field of individual pixels.
Our method surpasses the state-of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-RS, Fastec-RS, and BS-RSC datasets, respectively.
arXiv Detail & Related papers (2023-03-31T15:09:18Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - Time-Multiplexed Coded Aperture Imaging: Learned Coded Aperture and
Pixel Exposures for Compressive Imaging Systems [56.154190098338965]
We show that our proposed time multiplexed coded aperture (TMCA) can be optimized end-to-end.
TMCA induces better coded snapshots enabling superior reconstructions in two different applications: compressive light field imaging and hyperspectral imaging.
This codification outperforms the state-of-the-art compressive imaging systems by more than 4dB in those applications.
arXiv Detail & Related papers (2021-04-06T22:42:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.