Manipulating 3D Molecules in a Fixed-Dimensional SE(3)-Equivariant Latent Space
- URL: http://arxiv.org/abs/2506.00771v1
- Date: Sun, 01 Jun 2025 01:30:15 GMT
- Title: Manipulating 3D Molecules in a Fixed-Dimensional SE(3)-Equivariant Latent Space
- Authors: Zitao Chen, Yinjun Jia, Zitong Tian, Wei-Ying Ma, Yanyan Lan,
- Abstract summary: We propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules.<n>MolFLAE encodes 3D molecules using an SE(3)-equivariant neural network into fixed number of latent nodes.<n>MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks.
- Score: 14.14542052863487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medicinal chemists often optimize drugs considering their 3D structures and designing structurally distinct molecules that retain key features, such as shapes, pharmacophores, or chemical properties. Previous deep learning approaches address this through supervised tasks like molecule inpainting or property-guided optimization. In this work, we propose a flexible zero-shot molecule manipulation method by navigating in a shared latent space of 3D molecules. We introduce a Variational AutoEncoder (VAE) for 3D molecules, named MolFLAE, which learns a fixed-dimensional, SE(3)-equivariant latent space independent of atom counts. MolFLAE encodes 3D molecules using an SE(3)-equivariant neural network into fixed number of latent nodes, distinguished by learned embeddings. The latent space is regularized, and molecular structures are reconstructed via a Bayesian Flow Network (BFN) conditioned on the encoder's latent output. MolFLAE achieves competitive performance on standard unconditional 3D molecule generation benchmarks. Moreover, the latent space of MolFLAE enables zero-shot molecule manipulation, including atom number editing, structure reconstruction, and coordinated latent interpolation for both structure and properties. We further demonstrate our approach on a drug optimization task for the human glucocorticoid receptor, generating molecules with improved hydrophilicity while preserving key interactions, under computational evaluations. These results highlight the flexibility, robustness, and real-world utility of our method, opening new avenues for molecule editing and optimization.
Related papers
- Towards Unified and Lossless Latent Space for 3D Molecular Latent Diffusion Modeling [77.26556208024633]
3D molecule generation is crucial for drug discovery and material science.<n>Existing approaches typically maintain separate latent spaces for invariant and equivariant modalities.<n>We propose textbfUAE-3D, a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space.
arXiv Detail & Related papers (2025-03-19T08:56:13Z) - Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation [29.905705361297578]
conditional generation of 3D drug-like molecules with textitexplicit control<n>We propose an E(3)-equivariant Wasserstein autoencoder and factorize the latent space of our generative model into two disentangled aspects: molecular properties and the remaining structural context of 3D molecules.
arXiv Detail & Related papers (2024-12-19T17:33:56Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
We introduce the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation.
GCDM outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings.
We also show that GCDM's geometric features can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules.
arXiv Detail & Related papers (2023-02-08T20:01:51Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Learning to design drug-like molecules in three-dimensional space using
deep generative models [0.0]
Ligand Neural Network (L-Net) is a novel graph generative model for designing drug-like molecules with high-quality 3D structures.
L-Net is capable of generating chemically correct, conformationally valid, and highly druglike molecules.
arXiv Detail & Related papers (2021-04-17T07:30:23Z) - Generating 3D Molecular Structures Conditional on a Receptor Binding
Site with Deep Generative Models [0.0]
We describe for the first time a deep generative model that can generate 3D structures conditioned on a three-dimensional molecular binding pocket.
We show that valid and unique molecules can be readily sampled from the variational latent space defined by a reference seed' structure.
arXiv Detail & Related papers (2020-10-16T16:27:47Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.