Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution
- URL: http://arxiv.org/abs/2506.01037v1
- Date: Sun, 01 Jun 2025 14:36:25 GMT
- Title: Self-supervised ControlNet with Spatio-Temporal Mamba for Real-world Video Super-resolution
- Authors: Shijun Shi, Jing Xu, Lijing Lu, Zhihang Li, Kai Hu,
- Abstract summary: We propose a noise-bust real-world VSR framework by incorporating self-supervised learning and Mamba into pre-trained latent diffusion models.<n>Self-supervised ControlNet uses HR features as guidance and employs contrastive learning to extract degradation-insensitive features from LR videos.<n>Three-stage training strategy based on a mixture of HR-LR videos is proposed to stabilize VSR training.
- Score: 9.852542365445931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing diffusion-based video super-resolution (VSR) methods are susceptible to introducing complex degradations and noticeable artifacts into high-resolution videos due to their inherent randomness. In this paper, we propose a noise-robust real-world VSR framework by incorporating self-supervised learning and Mamba into pre-trained latent diffusion models. To ensure content consistency across adjacent frames, we enhance the diffusion model with a global spatio-temporal attention mechanism using the Video State-Space block with a 3D Selective Scan module, which reinforces coherence at an affordable computational cost. To further reduce artifacts in generated details, we introduce a self-supervised ControlNet that leverages HR features as guidance and employs contrastive learning to extract degradation-insensitive features from LR videos. Finally, a three-stage training strategy based on a mixture of HR-LR videos is proposed to stabilize VSR training. The proposed Self-supervised ControlNet with Spatio-Temporal Continuous Mamba based VSR algorithm achieves superior perceptual quality than state-of-the-arts on real-world VSR benchmark datasets, validating the effectiveness of the proposed model design and training strategies.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution [55.14432034345353]
We study key design principles for latter cascaded video super-resolution models, which are underexplored currently.<n>First, we propose two strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator.<n>Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs.
arXiv Detail & Related papers (2025-06-24T17:57:26Z) - MambaVSR: Content-Aware Scanning State Space Model for Video Super-Resolution [33.457410717030946]
We propose MambaVSR, the first state-space model framework for super-resolution video.<n>MambaVSR enables dynamic interactions through the Shared Compass Construction ( SCC) and the Content-Aware Sequentialization (CAS)<n>Building upon, the CAS module effectively aligns and aggregates non-local similar content across multiple frames by interleaving temporal features along the learned spatial order.
arXiv Detail & Related papers (2025-06-13T13:22:28Z) - ViaRL: Adaptive Temporal Grounding via Visual Iterated Amplification Reinforcement Learning [68.76048244253582]
We introduce ViaRL, the first framework to leverage rule-based reinforcement learning (RL) for optimizing frame selection in video understanding.<n>ViaRL utilizes the answer accuracy of a downstream model as a reward signal to train a frame selector through trial-and-error.<n>ViaRL consistently delivers superior temporal grounding performance and robust generalization across diverse video understanding tasks.
arXiv Detail & Related papers (2025-05-21T12:29:40Z) - DC-VSR: Spatially and Temporally Consistent Video Super-Resolution with Video Diffusion Prior [13.324336907242195]
Video-resolution (VSR) aims to reconstruct a high-resolution (HR) video from a low-resolution (LR) counterpart.<n>DC-VSR produces spatially and temporally consistent VSR results with realistic textures.<n> experiments demonstrate that DC-VSR achieves spatially and temporally consistent high-quality VSR results, outperforming previous approaches.
arXiv Detail & Related papers (2025-02-05T10:15:00Z) - DiffVSR: Revealing an Effective Recipe for Taming Robust Video Super-Resolution Against Complex Degradations [25.756755602342942]
We present DiffVSR, featuring a Progressive Learning Strategy (PLS) that systematically decomposes this learning burden through staged training.<n>Our framework additionally incorporates an Interweaved Latent Transition (ILT) technique that maintains competitive temporal consistency without additional training overhead.
arXiv Detail & Related papers (2025-01-17T10:53:03Z) - Collaborative Feedback Discriminative Propagation for Video Super-Resolution [66.61201445650323]
Key success of video super-resolution (VSR) methods stems mainly from exploring spatial and temporal information.
Inaccurate alignment usually leads to aligned features with significant artifacts.
propagation modules only propagate the same timestep features forward or backward.
arXiv Detail & Related papers (2024-04-06T22:08:20Z) - Motion-Guided Latent Diffusion for Temporally Consistent Real-world Video Super-resolution [15.197746480157651]
We propose an effective real-world VSR algorithm by leveraging the strength of pre-trained latent diffusion models.
We exploit the temporal dynamics in LR videos to guide the diffusion process by optimizing the latent sampling path with a motion-guided loss.
The proposed motion-guided latent diffusion based VSR algorithm achieves significantly better perceptual quality than state-of-the-arts on real-world VSR benchmark datasets.
arXiv Detail & Related papers (2023-12-01T14:40:07Z) - Benchmark Dataset and Effective Inter-Frame Alignment for Real-World
Video Super-Resolution [65.20905703823965]
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years.
It remains challenging to deploy existing VSR methods to real-world data with complex degradations.
EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network.
arXiv Detail & Related papers (2022-12-10T17:41:46Z) - Structured Sparsity Learning for Efficient Video Super-Resolution [99.1632164448236]
We develop a structured pruning scheme called Structured Sparsity Learning (SSL) according to the properties of video super-resolution (VSR) models.
In SSL, we design pruning schemes for several key components in VSR models, including residual blocks, recurrent networks, and upsampling networks.
arXiv Detail & Related papers (2022-06-15T17:36:04Z) - DynaVSR: Dynamic Adaptive Blind Video Super-Resolution [60.154204107453914]
DynaVSR is a novel meta-learning-based framework for real-world video SR.
We train a multi-frame downscaling module with various types of synthetic blur kernels, which is seamlessly combined with a video SR network for input-aware adaptation.
Experimental results show that DynaVSR consistently improves the performance of the state-of-the-art video SR models by a large margin.
arXiv Detail & Related papers (2020-11-09T15:07:32Z) - Video Face Super-Resolution with Motion-Adaptive Feedback Cell [90.73821618795512]
Video super-resolution (VSR) methods have recently achieved a remarkable success due to the development of deep convolutional neural networks (CNN)
In this paper, we propose a Motion-Adaptive Feedback Cell (MAFC), a simple but effective block, which can efficiently capture the motion compensation and feed it back to the network in an adaptive way.
arXiv Detail & Related papers (2020-02-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.