A Large Convolutional Neural Network for Clinical Target and Multi-organ Segmentation in Gynecologic Brachytherapy with Multi-stage Learning
- URL: http://arxiv.org/abs/2506.01073v1
- Date: Sun, 01 Jun 2025 16:21:48 GMT
- Title: A Large Convolutional Neural Network for Clinical Target and Multi-organ Segmentation in Gynecologic Brachytherapy with Multi-stage Learning
- Authors: Mingzhe Hu, Yuan Gao, Yuheng Li, Ricahrd LJ Qiu, Chih-Wei Chang, Keyur D. Shah, Priyanka Kapoor, Beth Bradshaw, Yuan Shao, Justin Roper, Jill Remick, Zhen Tian, Xiaofeng Yang,
- Abstract summary: This study presents GynBTNet, a novel multi-stage learning framework designed to enhance segmentation performance.<n>The model was evaluated against state-of-the-art methods using the Dice Similarity Coefficient (DSC), 95th percentile Hausdorff Distance (HD95), and Average Surface Distance (ASD)<n>It yielded a DSC of 0.837 +/- 0.068 for CTV, 0.940 +/- 0.052 for the bladder, 0.842 +/- 0.070 for the rectum, and 0.871 +/- 0.047 for the uterus.
- Score: 9.95345958148364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: Accurate segmentation of clinical target volumes (CTV) and organs-at-risk is crucial for optimizing gynecologic brachytherapy (GYN-BT) treatment planning. However, anatomical variability, low soft-tissue contrast in CT imaging, and limited annotated datasets pose significant challenges. This study presents GynBTNet, a novel multi-stage learning framework designed to enhance segmentation performance through self-supervised pretraining and hierarchical fine-tuning strategies. Methods: GynBTNet employs a three-stage training strategy: (1) self-supervised pretraining on large-scale CT datasets using sparse submanifold convolution to capture robust anatomical representations, (2) supervised fine-tuning on a comprehensive multi-organ segmentation dataset to refine feature extraction, and (3) task-specific fine-tuning on a dedicated GYN-BT dataset to optimize segmentation performance for clinical applications. The model was evaluated against state-of-the-art methods using the Dice Similarity Coefficient (DSC), 95th percentile Hausdorff Distance (HD95), and Average Surface Distance (ASD). Results: Our GynBTNet achieved superior segmentation performance, significantly outperforming nnU-Net and Swin-UNETR. Notably, it yielded a DSC of 0.837 +/- 0.068 for CTV, 0.940 +/- 0.052 for the bladder, 0.842 +/- 0.070 for the rectum, and 0.871 +/- 0.047 for the uterus, with reduced HD95 and ASD compared to baseline models. Self-supervised pretraining led to consistent performance improvements, particularly for structures with complex boundaries. However, segmentation of the sigmoid colon remained challenging, likely due to anatomical ambiguities and inter-patient variability. Statistical significance analysis confirmed that GynBTNet's improvements were significant compared to baseline models.
Related papers
- Automatic Cough Analysis for Non-Small Cell Lung Cancer Detection [33.37223681850477]
Early detection of non-small cell lung cancer (NSCLC) is critical for improving patient outcomes.<n>We explore the use of automatic cough analysis as a pre-screening tool for distinguishing between NSCLC patients and healthy controls.<n>Recordings were analyzed using machine learning techniques, such as support vector machine (SVM) and XGBoost.
arXiv Detail & Related papers (2025-07-25T11:30:22Z) - Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment [3.5408411348831232]
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI.<n>The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the DiceedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions.
arXiv Detail & Related papers (2025-05-23T14:40:09Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.<n>We propose a novel continual learning-driven CT model that can segment complete anatomies.<n>Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - DynSegNet:Dynamic Architecture Adjustment for Adversarial Learning in Segmenting Hemorrhagic Lesions from Fundus Images [8.359851428921386]
The paper proposes an adversarial learning-based dynamic architecture adjustment approach that integrates hierarchical U-shaped encoder-decoder, residual blocks, attention mechanisms, and ASPP modules.<n> Experimental results demonstrate a Dice coefficient of 0.6802, IoU of 0.5602, Recall of 0.766, Precision of 0.6525, and Accuracy of 0.9955, effectively addressing the challenges in fundus image hemorrhage segmentation.
arXiv Detail & Related papers (2025-02-13T12:11:58Z) - Hybrid Deep Learning-Based for Enhanced Occlusion Segmentation in PICU Patient Monitoring [0.0]
We propose a hybrid approach to segment common occlusions encountered in remote monitoring applications within PICUs.
Our approach centers on creating a deep-learning pipeline for limited training data scenarios.
The proposed framework yields an overall classification performance with 92.5% accuracy, 93.8% recall, 90.3% precision, and 92.0% F1-score.
arXiv Detail & Related papers (2024-07-18T09:37:55Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
Histologic remission is a new therapeutic target in ulcerative colitis (UC)
Endocytoscopy (EC) is a novel ultra-high magnification endoscopic technique.
We propose a neural network model that can assess histological disease activity in EC images.
arXiv Detail & Related papers (2023-08-28T15:54:14Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
The aim is to improve the workflow of prostate cancer detection and diagnosis.
The top-performing model is the Attention R2U-Net, achieving a mean Intersection over Union (IoU) of 76.3% and Dice Similarity Coefficient (DSC) of 85% for segmenting all zones.
arXiv Detail & Related papers (2023-08-09T01:38:58Z) - Differentiable Topology-Preserved Distance Transform for Pulmonary
Airway Segmentation [34.22415353209505]
We propose a Differentiable Topology-Preserved Distance Transform (DTPDT) framework to improve the performance of airway segmentation.
A Topology-Preserved Surrogate (TPS) learning strategy is first proposed to balance the training progress within-class distribution.
A Convolutional Distance Transform (CDT) is designed to identify the breakage phenomenon with superior sensitivity and minimize the variation of the distance map between the predictionand ground-truth.
arXiv Detail & Related papers (2022-09-17T15:47:01Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Nested-block self-attention for robust radiotherapy planning
segmentation [3.2541650155921142]
Deep convolutional networks have been widely studied for head and neck (HN) organs at risk (OAR) segmentation.
Their use for routine clinical treatment planning is limited by a lack of robustness to imaging artifacts, low soft tissue contrast on CT, and the presence of abnormal anatomy.
We developed a computationally efficient nested block self-attention (NBSA) method that can be combined with any convolutional network.
arXiv Detail & Related papers (2021-02-26T15:28:47Z) - Boosting Segmentation Performance across datasets using histogram
specification with application to pelvic bone segmentation [1.3750624267664155]
We propose a methodology based on modulation of image tonal distributions and deep learning to boost the performance of networks trained on limited data.
The segmentation task uses a U-Net configuration with an EfficientNet-B0 backbone, optimized using an augmented BCE-IoU loss function.
arXiv Detail & Related papers (2021-01-26T23:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.