Accelerated Learning with Linear Temporal Logic using Differentiable Simulation
- URL: http://arxiv.org/abs/2506.01167v1
- Date: Sun, 01 Jun 2025 20:59:40 GMT
- Title: Accelerated Learning with Linear Temporal Logic using Differentiable Simulation
- Authors: Alper Kamil Bozkurt, Calin Belta, Ming C. Lin,
- Abstract summary: Traditional safety assurance approaches, such as state avoidance and constrained Markov decision processes, often inadequately capture trajectory requirements.<n>We propose the first method, that integrates with differentiable simulators, facilitating efficient gradient-based learning directly from specifications.<n>Our approach introduces soft labeling to achieve differentiable rewards and states, effectively mitigating the sparse-reward issue intrinsic to without compromising objective correctness.
- Score: 21.84092672461171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To ensure learned controllers comply with safety and reliability requirements for reinforcement learning in real-world settings remains challenging. Traditional safety assurance approaches, such as state avoidance and constrained Markov decision processes, often inadequately capture trajectory requirements or may result in overly conservative behaviors. To address these limitations, recent studies advocate the use of formal specification languages such as linear temporal logic (LTL), enabling the derivation of correct-by-construction learning objectives from the specified requirements. However, the sparse rewards associated with LTL specifications make learning extremely difficult, whereas dense heuristic-based rewards risk compromising correctness. In this work, we propose the first method, to our knowledge, that integrates LTL with differentiable simulators, facilitating efficient gradient-based learning directly from LTL specifications by coupling with differentiable paradigms. Our approach introduces soft labeling to achieve differentiable rewards and states, effectively mitigating the sparse-reward issue intrinsic to LTL without compromising objective correctness. We validate the efficacy of our method through experiments, demonstrating significant improvements in both reward attainment and training time compared to the discrete methods.
Related papers
- Efficient Uncertainty in LLMs through Evidential Knowledge Distillation [3.864321514889099]
We introduce a novel approach enabling efficient and effective uncertainty estimation in LLMs without sacrificing performance.<n>We distill uncertainty-aware teacher models into compact student models sharing the same architecture but fine-tuned using Low-Rank Adaptation (LoRA)<n> Empirical evaluations on classification datasets demonstrate that such students can achieve comparable or superior predictive and uncertainty quantification performance.
arXiv Detail & Related papers (2025-07-24T12:46:40Z) - Certified Approximate Reachability (CARe): Formal Error Bounds on Deep Learning of Reachable Sets [45.67587657709892]
We introduce an epsilon-approximate Hamilton-Jacobi Partial Differential Equation (HJ-PDE), which establishes a relationship between training loss and accuracy of the true reachable set.<n>To the best of our knowledge, Certified Approximate Reachability (CARe) is the first approach to provide soundness guarantees on learned reachable sets of continuous dynamical systems.
arXiv Detail & Related papers (2025-03-31T10:02:57Z) - DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications for Multi-Task RL [59.01527054553122]
Linear temporal logic (LTL) has recently been adopted as a powerful formalism for specifying complex, temporally extended tasks.<n>Existing approaches suffer from several shortcomings.<n>We propose a novel learning approach to address these concerns.
arXiv Detail & Related papers (2024-10-06T21:30:38Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
Linear temporal logic (LTL) is a powerful language for task specification in reinforcement learning.<n>We show that the synthesized reward signal remains fundamentally sparse, making exploration challenging.<n>We show how better exploration can be achieved by further leveraging the specification and casting its corresponding Limit Deterministic B"uchi Automaton (LDBA) as a Markov reward process.
arXiv Detail & Related papers (2024-08-18T14:25:44Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Validity Learning on Failures: Mitigating the Distribution Shift in Autonomous Vehicle Planning [2.3558144417896583]
The planning problem constitutes a fundamental aspect of the autonomous driving framework.
We propose Validity Learning on Failures, VL(on failure) as a remedy to address this issue.
We show that VL(on failure) outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2024-06-03T17:25:18Z) - LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning [12.839846486863308]
In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time.
We propose a data-driven diffusion-based framework, finiteDoG, that modifies the inference steps of the reverse process given an instruction specified using linear temporal logic.
Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences.
arXiv Detail & Related papers (2024-05-07T11:54:22Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
We treat safe optimization-based control strategies as experts in an imitation learning problem.
We train a learned policy that can be cheaply evaluated at run-time and that provably satisfies the same safety guarantees as the expert.
arXiv Detail & Related papers (2021-02-18T05:11:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.