論文の概要: Dynamic Modes as Time Representation for Spatiotemporal Forecasting
- arxiv url: http://arxiv.org/abs/2506.01212v1
- Date: Sun, 01 Jun 2025 23:16:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.994164
- Title: Dynamic Modes as Time Representation for Spatiotemporal Forecasting
- Title(参考訳): 時空間予測のための時間表現としての動的モード
- Authors: Menglin Kong, Vincent Zhihao Zheng, Xudong Wang, Lijun Sun,
- Abstract要約: 提案手法は動的モード合成(DMD)を用いて観測データから直接時間モードを抽出する。
都市移動性,高速道路交通,気候に関する実験により,DMDをベースとした埋没は長期水平予測の精度を一貫して改善し,残差相関を低減し,時間的一般化を高めることが示されている。
- 参考スコア(独自算出の注目度): 19.551966701918236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a data-driven time embedding method for modeling long-range seasonal dependencies in spatiotemporal forecasting tasks. The proposed approach employs Dynamic Mode Decomposition (DMD) to extract temporal modes directly from observed data, eliminating the need for explicit timestamps or hand-crafted time features. These temporal modes serve as time representations that can be seamlessly integrated into deep spatiotemporal forecasting models. Unlike conventional embeddings such as time-of-day indicators or sinusoidal functions, our method captures complex multi-scale periodicity through spectral analysis of spatiotemporal data. Extensive experiments on urban mobility, highway traffic, and climate datasets demonstrate that the DMD-based embedding consistently improves long-horizon forecasting accuracy, reduces residual correlation, and enhances temporal generalization. The method is lightweight, model-agnostic, and compatible with any architecture that incorporates time covariates.
- Abstract(参考訳): 本稿では,時空間予測タスクにおける長期的季節依存性をモデル化するためのデータ駆動型時間埋め込み手法を提案する。
提案手法では、動的モード分解(DMD)を用いて観測データから直接時間モードを抽出し、明示的なタイムスタンプや手作りの時間特徴を必要としない。
これらの時間モードは、深い時空間予測モデルにシームレスに統合できる時間表現として機能する。
日時インジケータや正弦波関数などの従来の埋め込みとは異なり、時空間データのスペクトル解析により複雑な多スケール周期性を捉える。
都市移動、高速道路交通、気候データセットに関する大規模な実験は、MDDをベースとした埋め込みが長期水平予測の精度を一貫して改善し、残差相関を低減し、時間的一般化を高めることを実証している。
メソッドは軽量で、モデルに依存しず、時間共変を含むあらゆるアーキテクチャと互換性がある。
関連論文リスト
- Dynamical Diffusion: Learning Temporal Dynamics with Diffusion Models [71.63194926457119]
動的拡散(DyDiff, Dynamical Diffusion)は, 時間的に意識された前と逆のプロセスを含む理論的に健全なフレームワークである。
科学的時間的予測、ビデオ予測、時系列予測に関する実験は、動的拡散が時間的予測タスクのパフォーマンスを一貫して改善することを示した。
論文 参考訳(メタデータ) (2025-03-02T16:10:32Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - A novel decomposed-ensemble time series forecasting framework: capturing
underlying volatility information [6.590038231008498]
本稿では, 時系列予測のパラダイムを提案する。このパラダイムは, 分解と, 時系列の揺らぎ情報を取得する能力を統合するものである。
各サブモードの数値データとボラティリティ情報の両方を利用してニューラルネットワークを訓練する。
このネットワークはサブモデムの情報予測に長けており、全てのサブモデムの予測を集約して最終的な出力を生成する。
論文 参考訳(メタデータ) (2023-10-13T01:50:43Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
本稿では,実世界のデータでしばしば発生する課題に対処するために,時系列計算と予測のための新しいモデリング手法を提案する。
本手法はシリーズの進化力学の連続時間依存モデルに依存する。
メタラーニングアルゴリズムによって駆動される変調機構は、観測されたタイムウインドウを超えて、見えないサンプルや外挿への適応を可能にする。
論文 参考訳(メタデータ) (2023-06-09T13:20:04Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
低ランクテンソル因子化により係数がパラメータ化される時間還元ベクトル自己回帰モデルを開発した。
時間的文脈において、複雑な時間変化系の挙動は、提案モデルにおける時間的モードによって明らかにすることができる。
論文 参考訳(メタデータ) (2022-11-28T15:59:52Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
本稿では,時間的予測に基づくアプリケーションにグラフストリームデータを活用するための汎用フレームワークを提案する。
提案フレームワークは,適切なグラフ時系列表現を学習するための新しい手法を含む。
トップ3の時間モデルは常に新しい$epsilon$-graphの時系列表現を利用するモデルであることが分かりました。
論文 参考訳(メタデータ) (2020-09-21T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。