論文の概要: Grassmannian Geometry Meets Dynamic Mode Decomposition in DMD-GEN: A New Metric for Mode Collapse in Time Series Generative Models
- arxiv url: http://arxiv.org/abs/2412.11292v1
- Date: Sun, 15 Dec 2024 19:53:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:56:00.074071
- Title: Grassmannian Geometry Meets Dynamic Mode Decomposition in DMD-GEN: A New Metric for Mode Collapse in Time Series Generative Models
- Title(参考訳): Grassmannian Geometry Meets Dynamic Mode Decomposition in DMD-GEN: A New Metric for Mode Collapse in Time Series Generative Models
- Authors: Amime Mohamed Aboussalah, Yassine Abbahaddou,
- Abstract要約: Generative Adversarial Networks (GANs) や Variational Autoencoders (Es) のような生成モデルは、トレーニングデータの完全な多様性をキャプチャできず、モード崩壊につながることが多い。
本稿では,時系列に特有のモード崩壊の定義を導入し,その重大度を定量化するための新しい計量 DMD-GEN を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) often fail to capture the full diversity of their training data, leading to mode collapse. While this issue is well-explored in image generation, it remains underinvestigated for time series data. We introduce a new definition of mode collapse specific to time series and propose a novel metric, DMD-GEN, to quantify its severity. Our metric utilizes Dynamic Mode Decomposition (DMD), a data-driven technique for identifying coherent spatiotemporal patterns, and employs Optimal Transport between DMD eigenvectors to assess discrepancies between the underlying dynamics of the original and generated data. This approach not only quantifies the preservation of essential dynamic characteristics but also provides interpretability by pinpointing which modes have collapsed. We validate DMD-GEN on both synthetic and real-world datasets using various generative models, including TimeGAN, TimeVAE, and DiffusionTS. The results demonstrate that DMD-GEN correlates well with traditional evaluation metrics for static data while offering the advantage of applicability to dynamic data. This work offers for the first time a definition of mode collapse for time series, improving understanding, and forming the basis of our tool for assessing and improving generative models in the time series domain.
- Abstract(参考訳): Generative Adversarial Networks (GANs) や Variational Autoencoders (VAEs) のような生成モデルは、トレーニングデータの完全な多様性をキャプチャできず、モード崩壊につながることが多い。
この問題は画像生成においてよく研究されているが、時系列データには未検討である。
本稿では,時系列に特有のモード崩壊の定義を導入し,その重大度を定量化するための新しい計量 DMD-GEN を提案する。
本手法は,コヒーレントな時空間パターンを識別するデータ駆動型動的モード分解(DMD)を用いて,DMD固有ベクトル間の最適移動を用いて,元のデータと生成されたデータとの相違性を評価する。
このアプローチは、本質的な動的特性の保存を定量化するだけでなく、どのモードが崩壊したかをピンポイントすることで解釈しやすくする。
我々は、TimeGAN、TimeVAE、DiffusionTSといった様々な生成モデルを用いて、合成および実世界のデータセット上でDMD-GENを検証する。
その結果,DMD-GENは静的データに対する従来の評価指標とよく相関し,動的データへの適用性の利点が示された。
本研究は,時系列におけるモード崩壊の定義を初めて提供し,理解を深め,時系列領域における生成モデルの評価と改善のためのツールの基礎を形成する。
関連論文リスト
- Entropic Regression DMD (ERDMD) Discovers Informative Sparse and Nonuniformly Time Delayed Models [0.0]
エントロピー回帰を用いた最適多段階動的モード分解モデルを決定する手法を提案する。
非一様時間空間を実現するために,高忠実度時間遅延MDDモデルを生成する手法を開発した。
これらのモデルは、非常に効率的で堅牢であることが示されている。
論文 参考訳(メタデータ) (2024-06-17T20:02:43Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Bagging, optimized dynamic mode decomposition (BOP-DMD) for robust,
stable forecasting with spatial and temporal uncertainty-quantification [2.741266294612776]
動的モード分解(DMD)は、時間的または時間的データのスナップショット上で、最適な線形力学モデルを学習するためのフレームワークを提供する。
DMDアルゴリズムの大多数は、力学のノイズ測定によるバイアスエラーを起こしやすいため、モデル適合性の低下と不安定な予測能力に繋がる。
最適化されたMDDアルゴリズムは、変数予測最適化によりモデルバイアスを最小限に抑え、安定化された予測能力をもたらす。
論文 参考訳(メタデータ) (2021-07-22T18:14:20Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
本研究では,孤立した特徴表現ではなく,潜在クラスタの遷移を追跡する新しい生成モデルを提案する。
新たに設計された動的ガウス混合分布が特徴であり、クラスタリング構造のダイナミクスを捉えている。
帰納的解析を可能にするために構造化推論ネットワークも設計されている。
論文 参考訳(メタデータ) (2021-03-03T04:10:07Z) - Discriminant Dynamic Mode Decomposition for Labeled Spatio-Temporal Data
Collections [16.69145658813375]
ラベル付き時間データコレクションからコヒーレントパターンを抽出する新しい方法を提案する。
このようなパターン抽出を動的モード分解に識別解析を組み込むことで実現します。
合成データセットといくつかの実世界データセットを用いた手法を例示する。
論文 参考訳(メタデータ) (2021-02-19T15:12:59Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
本稿では,時系列データにおける高変数の取得に優れる新しい確率的シーケンスモデルを提案する。
提案手法では,時間潜時変数を用いて基礎となるデータパターンに関する情報をキャプチャする。
提案手法の有効性を,合成および実世界のシーケンシャルデータに示す。
論文 参考訳(メタデータ) (2020-02-24T19:30:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。