論文の概要: Self-Refining Training for Amortized Density Functional Theory
- arxiv url: http://arxiv.org/abs/2506.01225v1
- Date: Mon, 02 Jun 2025 00:32:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:33.998134
- Title: Self-Refining Training for Amortized Density Functional Theory
- Title(参考訳): 補正密度汎関数理論のための自己精錬訓練
- Authors: Majdi Hassan, Cristian Gabellini, Hatem Helal, Dominique Beaini, Kirill Neklyudov,
- Abstract要約: そこで本稿では,自己修復学習戦略を導入することにより,大規模な事前コンパイルデータセットに対するアモータイズDFTソルバの依存性を低減する手法を提案する。
本手法は, 生成試料と基底状態エネルギーで定義される対象ボルツマン分布との差分を測定するKL偏差の変動上界の最小化として導出する。
- 参考スコア(独自算出の注目度): 5.5541132320126945
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Density Functional Theory (DFT) allows for predicting all the chemical and physical properties of molecular systems from first principles by finding an approximate solution to the many-body Schr\"odinger equation. However, the cost of these predictions becomes infeasible when increasing the scale of the energy evaluations, e.g., when calculating the ground-state energy for simulating molecular dynamics. Recent works have demonstrated that, for substantially large datasets of molecular conformations, Deep Learning-based models can predict the outputs of the classical DFT solvers by amortizing the corresponding optimization problems. In this paper, we propose a novel method that reduces the dependency of amortized DFT solvers on large pre-collected datasets by introducing a self-refining training strategy. Namely, we propose an efficient method that simultaneously trains a deep-learning model to predict the DFT outputs and samples molecular conformations that are used as training data for the model. We derive our method as a minimization of the variational upper bound on the KL-divergence measuring the discrepancy between the generated samples and the target Boltzmann distribution defined by the ground state energy. To demonstrate the utility of the proposed scheme, we perform an extensive empirical study comparing it with the models trained on the pre-collected datasets. Finally, we open-source our implementation of the proposed algorithm, optimized with asynchronous training and sampling stages, which enables simultaneous sampling and training. Code is available at https://github.com/majhas/self-refining-dft.
- Abstract(参考訳): 密度汎関数論(DFT)は、多体シュリンガー方程式の近似解を見つけることにより、第一原理から分子系のすべての化学的および物理的性質を予測することができる。
しかし、これらの予測のコストは、分子動力学をシミュレートする基底状態エネルギーを計算するとき、例えばエネルギー評価の規模を増大させるときに、実現不可能となる。
近年の研究では、分子配座のかなり大きなデータセットに対して、Deep Learningベースのモデルは、対応する最適化問題を和らげることで、古典的DFTソルバの出力を予測できることが示されている。
本稿では,自己修復学習戦略を導入することで,大規模な事前収集データセットに対するアモルト化DFTソルバの依存性を低減する手法を提案する。
そこで本研究では,深層学習モデルを同時に学習し,DFT出力を予測し,モデルのトレーニングデータとして使用する分子構造をサンプリングする手法を提案する。
本手法は, 生成試料と基底状態エネルギーで定義される対象ボルツマン分布との差分を測定するKL偏差の変動上界の最小化として導出する。
提案手法の有効性を実証するために,事前収集したデータセットで訓練されたモデルとの比較実験を行った。
最後に,非同期学習とサンプリング段階に最適化された提案アルゴリズムの実装をオープンソース化し,同時サンプリングとトレーニングを可能にする。
コードはhttps://github.com/majhas/self-refining-dft.comから入手できる。
関連論文リスト
- Minimum-Excess-Work Guidance [17.15668604906196]
本稿では,事前学習した確率フロー生成モデルを導くための正規化フレームワークを提案する。
本手法は,科学応用に共通するスパースデータ体制における効率的なガイダンスを可能にする。
粗粒タンパク質モデルにおけるフレームワークの汎用性を実証する。
論文 参考訳(メタデータ) (2025-05-19T17:19:43Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
科学的基礎モデル(SFM)にも同様のアプローチが適用できるかどうかを考察する。
数学辞書の任意の線形結合によって構築された偏微分方程式(PDE)の解の形で、低コストな物理情報ニューラルネットワーク(PINN)に基づく近似された事前データを収集する。
本研究では,1次元対流拡散反応方程式に関する実験的な証拠を提供する。
論文 参考訳(メタデータ) (2024-10-09T00:52:00Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
このチュートリアルは、下流の報酬関数を最適化するための微調整拡散モデルのための方法を網羅的に調査する。
PPO,微分可能最適化,報酬重み付きMLE,値重み付きサンプリング,経路整合性学習など,様々なRLアルゴリズムの適用について説明する。
論文 参考訳(メタデータ) (2024-07-18T17:35:32Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Balanced Training of Energy-Based Models with Adaptive Flow Sampling [13.951904929884618]
エネルギーベースモデル (EBMs) は、非正規化ログ密度を直接パラメータ化する汎用密度推定モデルである。
我々は、異なる種類の生成モデル、正規化フロー(NF)を用いたESMのための新しい最大可能性トレーニングアルゴリズムを提案する。
本手法はトレーニング中にNFをEMMに適合させ,NF支援サンプリング方式によりESMの正確な勾配が常に得られるようにする。
論文 参考訳(メタデータ) (2023-06-01T13:58:06Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。