Exploring the Potential of LLMs as Personalized Assistants: Dataset, Evaluation, and Analysis
- URL: http://arxiv.org/abs/2506.01262v1
- Date: Mon, 02 Jun 2025 02:25:46 GMT
- Title: Exploring the Potential of LLMs as Personalized Assistants: Dataset, Evaluation, and Analysis
- Authors: Jisoo Mok, Ik-hwan Kim, Sangkwon Park, Sungroh Yoon,
- Abstract summary: HiCUPID is a new benchmark to probe and unleash the potential of Large Language Models (LLMs) to deliver personalized responses.<n>Alongside a conversational dataset, HiCUPID provides a Llama-3.2-based automated evaluation model.
- Score: 35.18369708380039
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Personalized AI assistants, a hallmark of the human-like capabilities of Large Language Models (LLMs), are a challenging application that intertwines multiple problems in LLM research. Despite the growing interest in the development of personalized assistants, the lack of an open-source conversational dataset tailored for personalization remains a significant obstacle for researchers in the field. To address this research gap, we introduce HiCUPID, a new benchmark to probe and unleash the potential of LLMs to deliver personalized responses. Alongside a conversational dataset, HiCUPID provides a Llama-3.2-based automated evaluation model whose assessment closely mirrors human preferences. We release our dataset, evaluation model, and code at https://github.com/12kimih/HiCUPID.
Related papers
- Evaluating LLM-corrupted Crowdsourcing Data Without Ground Truth [21.672923905771576]
Large language models (LLMs) by crowdsourcing workers pose a challenge to datasets intended to reflect human input.<n>We propose a training-free scoring mechanism with theoretical guarantees under a crowdsourcing model that accounts for LLM collusion.
arXiv Detail & Related papers (2025-06-08T04:38:39Z) - SubData: Bridging Heterogeneous Datasets to Enable Theory-Driven Evaluation of Political and Demographic Perspectives in LLMs [4.04666623219944]
We introduce SubData, an open-source Python library designed for standardizing heterogeneous datasets to evaluate perspective alignment.<n>We present a theory-driven approach leveraging SubData to test how differently-aligned LLMs classify content targeting specific demographics.
arXiv Detail & Related papers (2024-12-21T21:40:31Z) - Synthetic Data Generation with Large Language Models for Personalized Community Question Answering [47.300506002171275]
We build Sy-SE-PQA based on an existing dataset, SE-PQA, which consists of questions and answers posted on the popular StackExchange communities.
Our findings suggest that LLMs have high potential in generating data tailored to users' needs.
The synthetic data can replace human-written training data, even if the generated data may contain incorrect information.
arXiv Detail & Related papers (2024-10-29T16:19:08Z) - PersoBench: Benchmarking Personalized Response Generation in Large Language Models [6.8046587254152735]
We present a new benchmark, PersoBench, to evaluate the personalization ability of large language models (LLMs) in persona-aware dialogue generation.
Our analysis, conducted on three well-known persona-aware datasets, evaluates multiple dimensions of response quality, including fluency, diversity, coherence, and personalization.
arXiv Detail & Related papers (2024-10-04T07:29:41Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
Data quality issues, such as incomplete documentation, inaccurate labels, ethical concerns, and outdated information, remain common in widely used datasets.<n>With the surging ability of large language models (LLM), it's promising to streamline the discovery of hidden dataset issues with LLM agents.<n>In this work, we establish a benchmark to measure LLM agent's ability to tackle this challenge.
arXiv Detail & Related papers (2024-06-11T14:02:23Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
This survey focuses on the utility of Large Language Models for data annotation and synthesis.<n>It includes an in-depth taxonomy of data types that LLMs can annotate, a review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation and synthesis.
arXiv Detail & Related papers (2024-02-21T00:44:04Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented.
Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs.
arXiv Detail & Related papers (2023-11-08T19:01:13Z) - HAGRID: A Human-LLM Collaborative Dataset for Generative
Information-Seeking with Attribution [46.41448772928026]
We introduce HAGRID (Human-in-the-loop Attributable Generative Retrieval for Information-seeking dataset) for building end-to-end generative information-seeking models.
Unlike recent efforts that focus on black-box proprietary search engines, we built our dataset atop the English subset of MIRACL, a publicly available information retrieval dataset.
arXiv Detail & Related papers (2023-07-31T17:49:18Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.