UniversalCEFR: Enabling Open Multilingual Research on Language Proficiency Assessment
- URL: http://arxiv.org/abs/2506.01419v1
- Date: Mon, 02 Jun 2025 08:21:16 GMT
- Title: UniversalCEFR: Enabling Open Multilingual Research on Language Proficiency Assessment
- Authors: Joseph Marvin Imperial, Abdullah Barayan, Regina Stodden, Rodrigo Wilkens, Ricardo Munoz Sanchez, Lingyun Gao, Melissa Torgbi, Dawn Knight, Gail Forey, Reka R. Jablonkai, Ekaterina Kochmar, Robert Reynolds, Eugenio Ribeiro, Horacio Saggion, Elena Volodina, Sowmya Vajjala, Thomas Francois, Fernando Alva-Manchego, Harish Tayyar Madabushi,
- Abstract summary: We introduce UniversalCEFR, a large-scale multilingual multidimensional dataset of annotated texts according to the CEFR scale in 13 languages.<n>To enable open research in both automated readability and language proficiency assessment, UniversalCEFR comprises 505,807 CEFR-labeled texts.
- Score: 41.01607386452566
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce UniversalCEFR, a large-scale multilingual multidimensional dataset of texts annotated according to the CEFR (Common European Framework of Reference) scale in 13 languages. To enable open research in both automated readability and language proficiency assessment, UniversalCEFR comprises 505,807 CEFR-labeled texts curated from educational and learner-oriented resources, standardized into a unified data format to support consistent processing, analysis, and modeling across tasks and languages. To demonstrate its utility, we conduct benchmark experiments using three modelling paradigms: a) linguistic feature-based classification, b) fine-tuning pre-trained LLMs, and c) descriptor-based prompting of instruction-tuned LLMs. Our results further support using linguistic features and fine-tuning pretrained models in multilingual CEFR level assessment. Overall, UniversalCEFR aims to establish best practices in data distribution in language proficiency research by standardising dataset formats and promoting their accessibility to the global research community.
Related papers
- Multilingual Self-Taught Faithfulness Evaluators [11.200203292660758]
Self-Taught Evaluators for Multilingual Faithfulness is a framework that learns exclusively from synthetic multilingual summarization data.<n>Our framework shows improvements over existing baselines, including state-of-the-art English evaluators and machine translation-based approaches.
arXiv Detail & Related papers (2025-07-28T12:01:59Z) - Checklist Engineering Empowers Multilingual LLM Judges [12.64438771302935]
Checklist Engineering based LLM-as-a-Judge (CE-Judge) is a training-free framework that uses checklist intuition for multilingual evaluation with an open-source model.<n>Our method generally surpasses the baselines and performs on par with the GPT-4o model.
arXiv Detail & Related papers (2025-07-09T12:03:06Z) - Enhancing Multilingual LLM Pretraining with Model-Based Data Selection [33.68104398807581]
We propose a model-based filtering framework for multilingual datasets.<n>Our approach emphasizes transparency, simplicity, and efficiency.<n>We extend our framework to 20 languages for which we release the refined pretraining datasets.
arXiv Detail & Related papers (2025-02-14T18:42:07Z) - LUSIFER: Language Universal Space Integration for Enhanced Multilingual Embeddings with Large Language Models [89.13128402847943]
We present LUSIFER, a novel zero-shot approach that adapts LLM-based embedding models for multilingual tasks without requiring multilingual supervision.<n>LUSIFER's architecture combines a multilingual encoder, serving as a language-universal learner, with an LLM-based embedding model optimized for embedding-specific tasks.<n>We introduce a new benchmark encompassing 5 primary embedding tasks, 123 diverse datasets, and coverage across 14 languages.
arXiv Detail & Related papers (2025-01-01T15:43:07Z) - LLMs for Generalizable Language-Conditioned Policy Learning under Minimal Data Requirements [50.544186914115045]
This paper presents TEDUO, a novel training pipeline for offline language-conditioned policy learning.<n>TEDUO operates on easy-to-obtain, unlabeled datasets and is suited for the so-called in-the-wild evaluation, wherein the agent encounters previously unseen goals and states.
arXiv Detail & Related papers (2024-12-09T18:43:56Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
Large Language Models (LLMs) are becoming crucial across various fields, emphasizing the urgency for high-quality models in underrepresented languages.
This study explores the unique challenges faced by low-resource languages, such as data scarcity, model selection, evaluation, and computational limitations.
arXiv Detail & Related papers (2024-05-07T21:58:45Z) - Data-Augmentation-Based Dialectal Adaptation for LLMs [26.72394783468532]
This report presents GMUNLP's participation to the Dialect-Copa shared task at VarDial 2024.
The task focuses on evaluating the commonsense reasoning capabilities of large language models (LLMs) on South Slavic micro-dialects.
We propose an approach that combines the strengths of different types of language models and leverages data augmentation techniques to improve task performance.
arXiv Detail & Related papers (2024-04-11T19:15:32Z) - Language Models are Universal Embedders [45.8316643119292]
In the large language model (LLM) revolution, embedding is a key component of various systems.<n>We propose strategies for constructing embedders and introduce a universal evaluation benchmark.<n> Experimental results show that our trained model is proficient at generating good embeddings across languages and tasks.
arXiv Detail & Related papers (2023-10-12T11:25:46Z) - Understanding Translationese in Cross-Lingual Summarization [106.69566000567598]
Cross-lingual summarization (MS) aims at generating a concise summary in a different target language.
To collect large-scale CLS data, existing datasets typically involve translation in their creation.
In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese.
arXiv Detail & Related papers (2022-12-14T13:41:49Z) - CUGE: A Chinese Language Understanding and Generation Evaluation
Benchmark [144.05723617401674]
General-purpose language intelligence evaluation has been a longstanding goal for natural language processing.
We argue that for general-purpose language intelligence evaluation, the benchmark itself needs to be comprehensive and systematic.
We propose CUGE, a Chinese Language Understanding and Generation Evaluation benchmark with the following features.
arXiv Detail & Related papers (2021-12-27T11:08:58Z) - On Cross-Lingual Retrieval with Multilingual Text Encoders [51.60862829942932]
We study the suitability of state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks.
We benchmark their performance in unsupervised ad-hoc sentence- and document-level CLIR experiments.
We evaluate multilingual encoders fine-tuned in a supervised fashion (i.e., we learn to rank) on English relevance data in a series of zero-shot language and domain transfer CLIR experiments.
arXiv Detail & Related papers (2021-12-21T08:10:27Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC) has made tremendous advances enabled by the availability of large-scale high-quality ERC training data.
Despite of such rapid progress and widespread application, the datasets in languages other than high-resource languages such as English remain scarce.
We propose a Cross-Lingual Transposition ReThinking (XLTT) model by modelling existing high-quality extractive reading comprehension datasets in a multilingual environment.
arXiv Detail & Related papers (2021-07-11T09:35:16Z) - Evaluating Multilingual Text Encoders for Unsupervised Cross-Lingual
Retrieval [51.60862829942932]
We present a systematic empirical study focused on the suitability of the state-of-the-art multilingual encoders for cross-lingual document and sentence retrieval tasks.
For sentence-level CLIR, we demonstrate that state-of-the-art performance can be achieved.
However, the peak performance is not met using the general-purpose multilingual text encoders off-the-shelf', but rather relying on their variants that have been further specialized for sentence understanding tasks.
arXiv Detail & Related papers (2021-01-21T00:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.