ESGenius: Benchmarking LLMs on Environmental, Social, and Governance (ESG) and Sustainability Knowledge
- URL: http://arxiv.org/abs/2506.01646v1
- Date: Mon, 02 Jun 2025 13:19:09 GMT
- Title: ESGenius: Benchmarking LLMs on Environmental, Social, and Governance (ESG) and Sustainability Knowledge
- Authors: Chaoyue He, Xin Zhou, Yi Wu, Xinjia Yu, Yan Zhang, Lei Zhang, Di Wang, Shengfei Lyu, Hong Xu, Xiaoqiao Wang, Wei Liu, Chunyan Miao,
- Abstract summary: ESGenius is a benchmark for evaluating and enhancing the proficiency of Large Language Models (LLMs) in Environmental, Social and Governance (ESG)<n> ESGenius comprises two key components: ESGenius-QA and ESGenius-Corpus.
- Score: 53.18163869901266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce ESGenius, a comprehensive benchmark for evaluating and enhancing the proficiency of Large Language Models (LLMs) in Environmental, Social and Governance (ESG) and sustainability-focused question answering. ESGenius comprises two key components: (i) ESGenius-QA, a collection of 1 136 multiple-choice questions generated by LLMs and rigorously validated by domain experts, covering a broad range of ESG pillars and sustainability topics. Each question is systematically linked to its corresponding source text, enabling transparent evaluation and supporting retrieval-augmented generation (RAG) methods; and (ii) ESGenius-Corpus, a meticulously curated repository of 231 foundational frameworks, standards, reports and recommendation documents from seven authoritative sources. Moreover, to fully assess the capabilities and adaptation potential of the model, we implement a rigorous two-stage evaluation protocol -- Zero-Shot and RAG. Extensive experiments across 50 LLMs (ranging from 0.5 B to 671 B parameters) demonstrate that state-of-the-art models achieve only moderate performance in zero-shot settings, with accuracies typically around 55--70\%, highlighting ESGenius's challenging nature for LLMs in interdisciplinary contexts. However, models employing RAG show significant performance improvements, particularly for smaller models. For example, "DeepSeek-R1-Distill-Qwen-14B" improves from 63.82\% (zero-shot) to 80.46\% with RAG. These results underscore the necessity of grounding responses in authoritative sources for enhanced ESG understanding. To the best of our knowledge, ESGenius is the first benchmark curated for LLMs and the relevant enhancement technologies that focuses on ESG and sustainability topics.
Related papers
- GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning.<n>Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate.<n>We propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision.
arXiv Detail & Related papers (2025-06-19T08:49:13Z) - Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback [59.078756231841574]
Critique-GRPO is an online RL framework that integrates both natural language and numerical feedback for effective policy optimization.<n>We show Critique-GRPO consistently outperforms supervised learning and RL-based fine-tuning methods across eight challenging mathematical, STEM, and general reasoning tasks.
arXiv Detail & Related papers (2025-06-03T17:39:02Z) - SuperGPQA: Scaling LLM Evaluation across 285 Graduate Disciplines [118.8024915014751]
Large language models (LLMs) have demonstrated remarkable proficiency in academic disciplines such as mathematics, physics, and computer science.<n>However, human knowledge encompasses over 200 specialized disciplines, far exceeding the scope of existing benchmarks.<n>We present SuperGPQA, a benchmark that evaluates graduate-level knowledge and reasoning capabilities across 285 disciplines.
arXiv Detail & Related papers (2025-02-20T17:05:58Z) - AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities [0.3428444467046466]
We tasked 16 state-of-the-art large language models with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030.<n>To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR)
arXiv Detail & Related papers (2024-12-12T15:52:41Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - Measuring Sustainability Intention of ESG Fund Disclosure using Few-Shot Learning [1.1957520154275776]
This paper proposes a unique method and system to classify and score the fund prospectuses in the sustainable universe.
We employ few-shot learners to identify specific, ambiguous, and generic sustainable investment-related language.
We construct a ratio metric to determine language score and rating to rank products and quantify sustainability claims.
arXiv Detail & Related papers (2024-07-09T14:25:23Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.<n>A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - Empowering Large Language Models to Set up a Knowledge Retrieval Indexer via Self-Learning [17.83428132220955]
We propose a pre-retrieval framework named Pseudo-Graph Retrieval-Augmented Generation (PG-RAG)
PG-RAG conceptualizes LLMs as students by providing them with abundant raw reading materials.
During the retrieval phase, PG-RAG mimics the human behavior in flipping through notes.
arXiv Detail & Related papers (2024-05-27T08:26:45Z) - ESGReveal: An LLM-based approach for extracting structured data from ESG
reports [5.467389155759699]
ESGReveal is an innovative method proposed for efficiently extracting and analyzing Environmental, Social, and Governance (ESG) data from corporate reports.
This approach utilizes Large Language Models (LLM) enhanced with Retrieval Augmented Generation (RAG) techniques.
Its efficacy was appraised using ESG reports from 166 companies across various sectors listed on the Hong Kong Stock Exchange in 2022.
arXiv Detail & Related papers (2023-12-25T06:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.